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Abstract

A method is proposed to write crop succession requirements as linear constraints in an LP-based model for agri-

cultural production planning. Crop succession information is given in the form of a set of inadmissible successions of

crops. The decision variables represent the areas where a certain admissible sequence of crops is cultivated. The number

of decision variables may be reduced by forming suitable combinations of crop sequences. For this purpose, an

algorithm is presented. Also, multi-year linear programming models for farm production planning containing crop

succession constraints are considered. It is shown that, under some regularity conditions, a stationary cropping plan is

an optimal solution of such a model. Finally, it is discussed how to determine, given a collection of inadmissible se-

quences, crop sequences which are inadmissible but do not contain inadmissible subsequences. The length of the longest

of these sequences determines the length of the crop sequences taken into account in the model.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In agricultural production planning it may happen, and this is often the case, that succession of certain

crops on the same piece of land is not allowed or not advisable. Otherwise soil fertility will decrease or

the crops may become susceptible to diseases, plagues or weeds. On the other hand, a certain succession
of crops may be recommended. We say that in these situations certain crop succession requirements have

to be fulfilled. For example, in some regions cotton should not be grown after cotton because remaining

seeds may cause pests; sorghum after sorghum may cause problems with the weed striga; potatoes

should not succeed potatoes because of the occurrence of nematodes in the soil. And soya-beans is
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recommended to alternate with grains in order to restore the fertility. Often, it is important to leave the
land lying fallow so that natural vegetation can restore the fertility of the soil. Maize and other grains

should, for instance, be followed by fallow. Or it might be advisable to let arable land alternate with

grassland for cattle. In practice, the crop succession requirements usually determine crop rotation cycles.

A crop rotation cycle is a sequence of crops (e.g. soya-beans, maize, fallow) which satisfies the crop

succession requirements if applied cyclically on the same piece of land. A crop rotation cycle is usually

implemented in such a way that each year there is approximately the same acreage for each of the crops

in the cycle. Often only few crop rotation cycles are taken into consideration, advised by e.g. staff of

agricultural experimental stations. A well-known example is the 8-course rotation cycle cotton–fallow–
fallow–cotton–fallow–sorghum–fallow–fallow which has been applied for many years in the Gez-

ira scheme in Sudan. Since the introduction of pesticides, insecticides and mechanized cultivation the

Gezira rotation scheme has been replaced by the 4-course cycle cotton–wheat–sorghum (or groundnuts)–

fallow.

It will be clear that crop succession requirements have important implications for production planning

on the farm. Not only is it necessary to take the usage of the land in previous years into consideration, but it

is also important to be sure that the production plan is such that also in the future good (i.e. high yielding)

production plans are possible. The implementation of a fixed recommended crop rotation cycle may take
into account these considerations, but as a consequence there is not much freedom in choosing production

plans for future years.

In this paper we will focus instead on feasible production plans, i.e. those satisfying the crop succession

requirements. In our approach we adopt a mathematical programming framework and show that crop

succession requirements can be included as linear constraints in a model for agricultural production

planning. The paper is intended to assist in the modeling of real-life situations in agricultural production

planning, an example of which is the detailed study of farmers’ strategies on the Central Plateau in Burkina

Faso by Maatman [4]; see also Maatman et al. [3].
We assume the crop succession requirements are given in the form of crop sequences not allowed (i.e.

not advisable) to be cultivated on the same Maximum elapsed time stopping criterionpiece of land.

Whether a certain sequence is considered allowed or not may depend on several criteria (e.g. yield levels,

revenues, level of soil erosion, occurrence of plant diseases), the relative importance of which may vary in

different circumstances. In Section 2 we consider a planning period of T years. Decision variables are

introduced which represent the area of land where a certain sequence of m crops is cultivated, the last

crop of the sequence being grown in year t. Here, mþ 1 is the length of the longest inadmissible crop

sequence not containing any inadmissible subsequence. It appears that the problem of determining
whether the cropping plan of year t � 1 is compatible with the cropping plan of year t, can be interpreted

as a max-flow problem. In this way, the crop succession requirements may be written as linear constraints

in the decision variables. In Section 3 we consider linear programming models for farm production

planning, which contain crop succession constraints. It is shown that, under some regularity conditions, a

multi-year LP-model may be replaced by a one-year model. In this case a stationary cropping plan, i.e. a

cropping plan not depending on the year index t, is an optimal solution of the multi-year model. Also, it

is shown that a stationary cropping plan is composed of several crop rotation cycles. In Section 4 we

again consider a planning period of T years, as in Section 2. Here, we focus on reducing the number of
decision variables. For n crops, the number of decision variables for year t equals nm. We show that this

number may be reduced by forming combinations of some of the crop sequences without losing crop

succession information. An algorithm is presented which finds the crop sequences that may be combined.

In Section 5 a conclusion is presented. In Appendix A to this paper, we discuss how to determine

inadmissible crop sequences not containing inadmissible subsequences, when a collection of inadmissible

sequences is given. The results of Sections 2.2 and 3 are due to Klein Haneveld [2] and were included in

Schweigman [5].
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2. Crop succession constraints

2.1. Definitions and assumptions

We consider a piece of land of A ha on which n different crops may be grown, where crop n is

interpreted as fallow. We consider a planning period of T years, which are numbered t ¼ 1; 2; . . . ; T , and
assume that there is one growing season per year. It is assumed that crop succession requirements depend

only on the types of crops that are grown and not on the methods of cultivation that are used. Moreover,
we assume that the crop succession requirements are given in the form of crop sequences that are not

allowed to be cultivated on the same piece of land. We introduce the following definitions. Consider a

year t and a series of consequent years t þ 1; t þ 2; . . . ; t þ h, with hP 2. Let ðj1; j2; . . . ; jhÞ, be a sequence

of (not necessarily different) crops grown on the same piece of land, where js, s ¼ 1; 2; . . . ; h, refer to the

crops grown in year t þ s. It is said to be an inadmissible sequence if one of the following three conditions

holds:

(I1) Crop js is not allowed to succeed ðj1; j2; . . . ; js�1Þ, for some s ¼ 1; 2; . . . ; h, on the same piece of land.
(I2) Condition (I1) does not hold, but the cultivation of ðx; j1; j2; . . . ; jhÞ on the same piece of land is not

allowed for all crops x ¼ 1; . . . ; n.
(I3) Conditions (I1) and (I2) do not hold, but the cultivation of ðj1; j2; . . . ; jh; yÞ on the same piece of land is

not allowed for all crops y ¼ 1; . . . ; n.

A sequence of crops that is not inadmissible is called admissible. We assume that the (in)admissibility of a

crop sequence does not depend on the year t the sequence was started. Notice that it may happen that

ðj1; j2; . . . ; jhÞ is admissible, while ðj0; j1; j2; . . . ; jhÞ or ðj1; j2; . . . ; jh; jhþ1Þ are inadmissible, for certain crops
j0 and jhþ1. Hence, the admissibility of a certain sequence may depend on the crops preceding or succeeding

the sequence. The sequence ðj1; j2; . . . ; jhÞ is regarded as admissible if the succession of the crops j1; j2; . . . ; jh
on the same piece of land does not violate the crop succession requirements and an extension of the se-

quence is possible in the past and the future. However, it is not likely that any sequence will be inadmissible

due to (I2) or (I3), since an extension with fallow (i.e. crop n) is usually possible.

We say that the sequence ði1; i2; . . . ; ikÞ is a subsequence of ðj1; j2; . . . ; jhÞ if, for some l 2 ½1; h� k þ 1�,
k6 h, there holds
ðj1; j2; . . . ; jhÞ ¼ ðj1; . . . ; jl�1; i1; . . . ; ik; jlþk; . . . ; jhÞ:

If a sequence is admissible, then all its subsequences are admissible too. Analogously, if a sequence

ðj1; j2; . . . ; jhÞ is inadmissible, then all crop sequences containing ðj1; j2; . . . ; jhÞ are inadmissible too.

Therefore, the crop succession information may be expressed by all inadmissible sequences with the

shortest length h. We call such sequences minimal inadmissible sequences. Formally, they are defined as

follows.

Definition 2.1. An inadmissible sequence ðj1; j2; . . . ; jhÞ is called minimal if both the sequences ðj2; j3; . . . ; jhÞ
and ðj1; j2; . . . ; jh�1Þ are admissible.

As can be seen, a minimal inadmissible sequence does not contain any inadmissible subsequences. The set

of all sequences ðj1; j2; . . . ; jhÞ is denoted by f1; 2; . . . ; ngh. In the sequel we will sometimes use the notation

ðiÞ for an arbitrary sequence ði1; i2; . . . ; ihÞ and ðjÞ for an arbitrary sequence ðj1; j2; . . . ; jhÞ. We denote the

length of the longest minimal inadmissible sequence by mþ 1, i.e.
mþ 1 ¼ maxfh : there exists a minimal inadmissible sequence ðjÞ 2 f1; 2; . . . ; nghg: ð2:1Þ
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Since we assume that all single crops are admissible, it follows that mP 1. We assume that all minimal

inadmissible sequences are known. In Appendix A we will discuss how to determine minimal inadmissible

sequences from a given collection of inadmissible sequences.

To be able to determine all feasible cropping plans for year t, it is sufficient to know:

(a) which crops have been grown in the years t � m; . . . ; t � 1 on each part of the available land, and

(b) all admissible sequences of length mþ 1.

Notice that by (2.1), (b) is equivalent to knowing all minimal inadmissible sequences.

Next, we define the set of all admissible sequences of length m
S ¼ fðjÞ 2 f1; 2; . . . ; ngm : ðjÞ is admissibleg:

For each year t, we define the following decision variables which indicate the extension of the area where a

certain sequence ðjÞ 2 S is applied.
XtðjÞ ¼ Xtðj1; j2; . . . ; jmÞ : size of the area ðin haÞ where in year t � s crop jm�s is grown;

s ¼ 0; 1; . . . ;m� 1; t ¼ 1; 2; . . . ; T ; ðjÞ ¼ ðj1; j2; . . . ; jmÞ 2 S: ð2:2Þ
For ðjÞ 62 S, we set XtðjÞ ¼ 0. Notice that XtðjÞ only indicates the size of the area where crop sequence ðjÞ
is grown and not the location of this area on the piece of land under consideration. We will assume that

this location is immaterial in the sense that it has no influence on the yield per ha and the required
amount per ha of each input (see also Remark 3.4). Since we consider n crops, the number of decision

variables may be as large as nm for each t. In Section 4 we will reduce this number by combining several

sequences in S.
It is required that XtðjÞP 0, ðjÞ 2 S, and
X

ðjÞ2S
XtðjÞ ¼ A ð2:3Þ
for each t ¼ 1; 2; . . . ; T . This implies that in each year t all land is either cultivated or lying fallow. Notice

that the area where in year t crop i is grown, is given by
X
ðjÞ2f1;2;...;ngm�1

XtððjÞ; iÞ:
The information under (a) above can be derived from the values of Xt�1ðiÞ, ðiÞ 2 S, and can be used to

determine feasible values for XtðjÞ, ðjÞ 2 S. Next, we express the information under (b) by specifying, for

each sequence ðiÞ 2 S, the crops which are allowed to be cultivated after ðiÞ on the same piece of land.

In fact, we consider sequences which are allowed to succeed one another. This notion is defined below.

First, we need the following definition.

Definition 2.2. We say that the sequence ðj1; j2; . . . ; jmÞ 2 S is a compatible successor of the sequence

ði1; i2; . . . ; imÞ 2 S if j1 ¼ i2; j2 ¼ i3; . . . ; jm�1 ¼ im.

Hence, ðjÞ is a compatible successor of ðiÞ if it is logically possible to cultivate the crops j1; . . . ; jm in the

years t � mþ 1; . . . ; t on the same piece of land where in the years t � m; . . . ; t � 1 the crops i1; . . . ; im are

cultivated. It can be seen that this is equivalent to the requirement that j1 ¼ i2; j2 ¼ i3; . . . ; jm�1 ¼ im. Notice

that for any sequence there are n compatible successors, since there are n possible values for jm. For each
sequence ðiÞ 2 S we define a set of all ðjÞ 2 S which are compatible successors of ðiÞ.
COMPðiÞ ¼ fðjÞ 2 S : ðjÞ is a compatible successor of ðiÞg:
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If ðjÞ is a compatible successor of ðiÞ this does not imply that ðjÞ is also allowed to succeed ðiÞ. We define the

last notion as follows.

Definition 2.3. We say that the sequence ðjÞ ¼ ðj1; j2; . . . ; jmÞ 2 S is allowed to succeed the sequence

ðiÞ ¼ ði1; i2; . . . ; imÞ 2 S if ðjÞ is a compatible successor of ðiÞ and the sequence ði1; i2; . . . ; im; jmÞ is admissible.

Notice that Definition 2.3 does not depend on the year t in which the last crop jm is cultivated. For each

sequence ðiÞ 2 S we define a set of all ðjÞ 2 S that are allowed to succeed ðiÞ.

SUCðiÞ ¼ fðjÞ 2 S : ðjÞ is allowed to succeed ðiÞg: ð2:4Þ
Hence, SUCðiÞ � COMPðiÞ for ðiÞ 2 S. Since ðiÞ 2 S is admissible, it follows by (I2) and (I3) that

SUCðiÞ 6¼ ; and that there is a ðjÞ 2 S such that ðiÞ 2 SUCðjÞ.
The information under (b) above is now contained in the sets SUCðiÞ, ðiÞ 2 S. This implies that the

knowledge of Xt�1ðiÞ, ðiÞ 2 S, and the sets SUCðiÞ, ðiÞ 2 S, is sufficient to determine the feasible region of

XtðjÞ, ðjÞ 2 S.

2.2. Interpretation as a max-flow problem

Here, we focus on determining all feasible cropping plans XtðjÞ, when the cropping plan Xt�1ðiÞ and the

sets SUCðiÞ are known and (2.3) is satisfied for t � 1 and t. By interpreting this problem as a max-flow

problem, a system of linear equations in both XtðjÞ and Xt�1ðiÞ is obtained. These equations are necessary

and sufficient conditions for the compatibility of Xt�1ðiÞ and XtðjÞ. We call this system of equations the crop

succession constraints. For the planning period of T years, the crop succession requirements are satisfied
if and only if the crop succession constraints hold for t ¼ 2; 3; . . . ; T .

Finding a feasible cropping plan XtðjÞ given the cropping plan Xt�1ðiÞ is equivalent to finding a feasible

allocation of the crops in year t, given the allocations in years t � m; . . . ; t � 1. This allocation prob-

lem may be formulated as follows. Let Xt�1ðiÞ and XtðjÞ, ðiÞ; ðjÞ 2 S, be given. We define the transition

variables
ZtððiÞ; ðjÞÞ : size of the area ðin haÞ where in years t � m; . . . ; t � 1 the crop

sequence ðiÞ has been grown and in years t � mþ 1; . . . ; t the crop

sequence ðjÞ is grown; ðjÞ 2 COMPðiÞ:
For ðjÞ 62 COMPðiÞ we set ZtððiÞ; ðjÞÞ ¼ 0. The variables ZtððiÞ; ðjÞÞ should satisfy
X
ðjÞ2COMPðiÞ

ZtððiÞ; ðjÞÞ ¼ Xt�1ðiÞ 8ðiÞ 2 S; ð2:5Þ

X
ðiÞ2S:ðjÞ2COMPðiÞ

ZtððiÞ; ðjÞÞ ¼ XtðjÞ 8ðjÞ 2 S ð2:6Þ

ZtððiÞ; ðjÞÞP 0 8ðiÞ; ðjÞ 2 S; ðjÞ 2 COMPðiÞ; ð2:7Þ

ZtððiÞ; ðjÞÞ ¼ 0 if ðjÞ 62 SUCðiÞ: ð2:8Þ
We may now define the compatibility of the cropping plans Xt�1ðiÞ, ðiÞ 2 S, and XtðjÞ, ðjÞ 2 S, as follows.

Definition 2.4. We say that the cropping plans Xt�1ðiÞ, ðiÞ 2 S, and XtðjÞ, ðjÞ 2 S, are compatible if and only

if (2.3) holds for t � 1 and t and there exists a feasible solution ZtððiÞ; ðjÞÞ for the system (2.5)–(2.8).
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Since (2.3) holds for t � 1 and t, the sum of the right-hand side members of (2.5) equals A and the same is

true of (2.6). The right-hand side members of (2.5) and (2.6) being given we recognize in (2.5)–(2.8) the

constraints of a classical transportation problem in which total supply equals total demand and some of the

variables ZtððiÞ; ðjÞÞ are restricted to zero values.

For our purposes, however, it is more convenient to interpret (2.5)–(2.8) as a max-flow problem. This

is done as follows. Consider a network with a source node, supply nodes ðiÞ 2 S, demand nodes ðjÞ 2 S
and a sink node. There is a directed arc from the source to every supply node ðiÞ with capacity Xt�1ðiÞ.
Analogously, there is a directed arc from every demand node ðjÞ to the sink with capacity XtðjÞ. Finally,
there is a directed arc from a supply node ðiÞ to a demand node ðjÞ if and only if ðjÞ 2 SUCðiÞ. Arcs

from ðiÞ to ðjÞ have infinite capacity. In this way, ZtððiÞ; ðjÞÞ represents the flow from ðiÞ to ðjÞ and there

exists a feasible solution to (2.5)–(2.8) if and only if there exists a flow of A units from the source to the

sink.

By the max-flow min-cut theorem (see Theorem 1.1 in [1]) a flow of A units is also the maximum flow

through the network. Indeed, since (2.3) holds for t � 1 and t, the cuts {source}–{supply nodes, demand

nodes, sink} and {source, supply nodes, demand nodes}–{sink} both have capacity A. Hence, by the

max-flow min-cut theorem, there exists a flow of A units if and only if there are no cuts (separating
the source and sink nodes) with capacity less than A. This observation is used to prove the following

theorem.

We consider sets I ; J � S with the property that no ðjÞ 2 J is allowed to succeed any ðiÞ 2 I , i.e.
ðjÞ 62 SUCðiÞ for all ðiÞ 2 I and all ðjÞ 2 J : ð2:9Þ

In Section 2.3 it will be discussed how such sets can be determined.

Theorem 2.5. Assume that (2.3) holds for t � 1 and t. Then the cropping plans Xt�1ðiÞ, ðiÞ 2 S, and XtðjÞ,
ðjÞ 2 S, are compatible if and only if
X

ðiÞ2I
Xt�1ðiÞ þ

X
ðjÞ2J

XtðjÞ6A; 8I ; J � S satisfying ð2:9Þ: ð2:10Þ
Proof. It suffices to show that (2.10) is equivalent to the requirement that there are no cuts separating

the source and sink nodes with capacity less than A. Denote the set of all supply nodes by U and the set of

all demand nodes by V . Let fU1;U2g and fV1; V2g be disjoint partitions of U and V respectively. An

arbitrary cut separating the source and sink nodes is of the form {source, U1, V1}–{U2, V2, sink}. The
capacity of this cut is infinite if there is an arc from U1 to V2. If this is not the case, then the capacity of

the cut equals
X
ðiÞ2U2

Xt�1ðiÞ þ
X
ðjÞ2V1

XtðjÞ: ð2:11Þ
Hence, there are no cuts with capacity less than A if and only if (2.11) is greater than or equal to A for all

cuts with no arcs from U1 to V2. Since (2.3) holds for t � 1 and t, this is equivalent to
A�
X
ðiÞ2U1

Xt�1ðiÞ þ A�
X
ðjÞ2V2

XtðjÞPA: ð2:12Þ
The proof is completed by writing (2.12) in the form
X
ðiÞ2U1

Xt�1ðiÞ þ
X
ðjÞ2V2

XtðjÞ6A
and setting I ¼ U1 and J ¼ V2. h
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We call the system of equations (2.10) the crop succession constraints. As can be seen, the crop succession
constraints are linear in Xt�1ðiÞ and XtðjÞ. For the whole planning period of T years the crop succession

requirements are satisfied if and only if
X
ðiÞ2I

Xt�1ðiÞ þ
X
ðjÞ2J

XtðjÞ6A; t ¼ 2; 3; . . . ; T 8I ; J � S satisfying ð2:9Þ: ð2:13Þ
If necessary, the cropping plan from the year before t ¼ 1 may be included by defining parameters x0ðjÞ,
ðjÞ 2 S, analogous to the variables XtðjÞ and adding the constraint (2.13) for t ¼ 1 with X0ðjÞ ¼ x0ðjÞ.

The finite planning horizon of T years may result in a situation where the possible cropping plans for the

year T þ 1 result in low yields or revenues. To avoid this situation we may include in (2.13) also t ¼ T þ 1

and require for example that X1ðjÞ ¼ XTþ1ðjÞ. In this way it is guaranteed that the production plan XTþ1ðjÞ is
a good starting point for the future. This approach will be discussed further in Section 3.1.

2.3. Redundant crop succession constraints

The number of crop succession constraints in (2.10) grows exponentially with n (although the number of

admissible sequences in the set S may be substantially less than nm). However, a lot of constraints in (2.10)

may be redundant. Here, we discuss a way to identify combinations of I and J for which the constraint

(2.10) is redundant. For I � S, let JðIÞ be defined by
JðIÞ ¼ fðjÞ 2 S : ðjÞ 62 SUCðiÞ 8ðiÞ 2 Ig:
A first observation is that, for a fixed set I � S, we only need to consider the set JðIÞ in (2.10), and not all

sets J � S which satisfy (2.9). This is due to the fact that, for a fixed set I � S, the term
X
ðjÞ2J

XtðjÞ
in (2.10), is maximal for J ¼ JðIÞ. Hence, we replace (2.10) by
X
ðiÞ2I

Xt�1ðiÞ þ
X

ðjÞ2JðIÞ
XtðjÞ6A 8I � S: ð2:14Þ
However, if JðIÞ ¼ ;, then (2.14) is implied by (2.3). Therefore, we only need to consider sets I with

JðIÞ 6¼ ;. We define
S1 ¼ fI � S : JðIÞ 6¼ ;g:
Suppose that I ;~I 2 S1 and I � ~I . Then Jð~IÞ � JðIÞ and it may happen that Jð~IÞ ¼ JðIÞ. In the latter case, the

constraint (2.14) for I is implied by the one for ~I . Hence, we may only consider sets I in the following

collection S2:
S2 ¼ fI 2 S1 : there is no ~I 2 S1 such that I � ~I and Jð~IÞ ¼ JðIÞg:
When we consider only sets I 2 S2 there may, however, still be redundant constraints in the system (2.14).

The constraint for I1 2 S2 is redundant if there exists an I2 2 S2, such that
ðI1 [ JðI1ÞÞ � ðI2 [ JðI2ÞÞ:

It may for example happen that I1 � I2 and JðI1Þ � I2. Or that I1 � JðI2Þ and JðI1Þ � JðI2Þ. Since excluding
all possibilities of redundancy is a rather tedious task, we will end our discussion at this point.

Notice that the roles of I and J are interchangeable, i.e. for J � S we also could have defined a set
IðJÞ ¼ fðiÞ 2 S : ðjÞ 62 SUCðiÞ 8ðjÞ 2 Jg and similar collections S1 and S2 as above.
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3. Stationary cropping plans in an LP-context

It is well-known that linear programming (LP) is a valuable tool for analysing production planning

problems. Also production planning of a farm may be analysed with the use of LP, see e.g. Schweigman

[5]. In this section, we consider a generic multi-year LP-model for farm production planning containing

crop succession constraints. In Section 3.1 it is shown that, under some regularity conditions, the multi-

year LP-model may be replaced by a one-year LP-model. In this case a stationary cropping plan, i.e.

XtðjÞ ¼ X ðjÞ for all t, is an optimal solution of the multi-year LP-model. In Section 3.2 we show that a
stationary cropping plan is composed of several crop rotation cycles. A method to determine these cycles

is presented.
3.1. A stationary linear programming model

We formulate the following generic LP-model for agricultural production planning for a planning period

of T years. The decision variables are XtðjÞ, as defined in (2.2). The model is given by
Maximize
XT
t¼1

X
ðjÞ2S

cðjÞXtðjÞ; ð3:1Þ

subject to
X
ðiÞ2I

Xt�1ðiÞ þ
X
ðjÞ2J

XtðjÞ6A; t ¼ 2; 3; . . . ; T þ 1

8I ; J � S satisfying ð2:9Þ; ð3:2Þ
X
ðjÞ2S

XtðjÞ ¼ A; t ¼ 1; 2; . . . ; T ; ð3:3Þ

X
ðjÞ2S

aðk; ðjÞÞXtðjÞ6 bðkÞ; k ¼ 1; 2; . . . ;K; t ¼ 1; 2; . . . ; T ; ð3:4Þ

X1ðjÞ ¼ XTþ1ðjÞ 8ðjÞ 2 S: ð3:5Þ
As mentioned in Section 2.2 we also include the variables XTþ1ðjÞ in the crop succession constraints (3.2)

and add (3.5) to ensure that the production plan XTþ1ðjÞ is a good starting point for the future.
The limited availability of land is described by (3.3). For other inputs, the constraints (3.4) are included.

The parameters aðk; ðjÞÞ indicate, for the crop sequence ðjÞ, how much of input k is needed to cultivate one

ha of crop jm. The inputs may be labour, manure, money, machines, seeds, etc. The parameters bðkÞ
represent the available amount of input k. Also food requirements may be written as (3.4). The parameters

cðjÞ in the objective function represent, for example, the revenues per ha (i.e. the selling price per kg

multiplied by the yield in kg) when crop sequence ðjÞ has been grown. For more details on the interpre-

tation of the constraints (3.4) and the objective function (3.1) we refer to Schweigman [5]; see also Maatman

et al. [3] and Maatman [4].
Notice that the parameters aðk; ðjÞÞ, bðkÞ and cðjÞ do not depend on t. Therefore, the model (3.1)–(3.5)

may be called a stationary LP-model. We need the following definition.

Definition 3.1. We call a cropping plan XtðjÞ, t ¼ 1; 2; . . . ; T , ðjÞ 2 S, stationary if XtðjÞ ¼ X ðjÞ,
t ¼ 1; 2; . . . ; T , ðjÞ 2 S.
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It follows that if an optimal solution of (3.1)–(3.5) is stationary, it is an optimal solution of
Maximize
X
ðjÞ2S

cðjÞX ðjÞ; ð3:6Þ

subject to
X
ðiÞ2I

X ðiÞ þ
X
ðjÞ2J

X ðjÞ6A 8I ; J � S satisfying ð2:9Þ; ð3:7Þ
X
ðjÞ2S

X ðjÞ ¼ A; ð3:8Þ
X
ðjÞ2S

aðk; ðjÞÞX ðjÞ6 bðkÞ; k ¼ 1; 2; . . . ;K: ð3:9Þ
The following proposition shows that if (3.1)–(3.5) is feasible, then it has an optimal solution which is

stationary. This result has an important practical implication: in an optimal strategy the production plan

may be chosen the same in all years of the planning period.

Proposition 3.2

(P1) Problem (3.1)–(3.5) is feasible if and only if problem (3.6)–(3.9) is feasible.
(P2) Suppose (3.1)–(3.5) is feasible. Let X �ðjÞ, ðjÞ 2 S, be an optimal solution of (3.6)–(3.9). Then XtðjÞ ¼

X �ðjÞ, t ¼ 1; 2; . . . ; T , ðjÞ 2 S, is an optimal solution of (3.1)–(3.5).

Proof. Let X be a feasible solution of (3.6)–(3.9). Then Xt ¼ X , t ¼ 1; . . . ; T , is a feasible solution of (3.1)–

(3.5). The proof of (P1) is complete if we show that if (3.1)–(3.5) is feasible, then there exists a feasible

solution to (3.1)–(3.5), which is stationary.

Suppose (3.1)–(3.5) is feasible. Since the feasible region is compact, it also has an optimal solution, say

X �
t , t ¼ 1; . . . ; T . Define, for h ¼ 1; . . . ; T ,
X ðhÞ ¼ ðX �
h ;X

�
hþ1; . . . ;X

�
T ;X

�
1 ; . . . ;X

�
h�1Þ:
Then each X ðhÞ is a feasible solution to (3.1)–(3.5). Moreover, since X ð1Þ ¼ X � and the objective function

(3.1) has the same value for all X ðhÞ, h ¼ 1; . . . ; T , the feasible solutions X ðhÞ are also optimal. Define
X ¼ 1

T

XT
h¼1

X ðhÞ ¼ 1

T

XT
t¼1

X �
t ; . . . ;

1

T

XT
t¼1

X �
t

 !
¼ X 1; . . . ;XT

� �
:

Since the feasible region of (3.1)–(3.5) is convex X is a feasible solution. This completes the proof of (P1),

since X is a stationary solution. Notice that the objective function (3.1) has the same value for X as for X �.

Therefore, X is an optimal solution of (3.1)–(3.5) and X 1 is an optimal solution of (3.6)–(3.9).
Next we prove (P2). Suppose (3.1)–(3.5) is feasible. By (P1) also (3.6)–(3.9) is feasible. Since the feasible

region of (3.6)–(3.9) is compact it has an optimal solution, say X 0. The stationary solution Xt ¼ X 0,

t ¼ 1; . . . ; T , is feasible for (3.1)–(3.5). Moreover, since X 1 above has the same objective value (3.6) as X 0,

the stationary solution Xt ¼ X 0 has the same objective value (3.1) as X . Hence, Xt ¼ X 0 is an optimal

solution of (3.1)–(3.5). This completes the proof of (P2). h

Remark 3.3. It is important to note that Proposition 3.2 does not hold if some of the parameters aðk; ðjÞÞ,
bðkÞ and cðjÞ in the model (3.1)–(3.5) depend on t. This implies that we assume that, for example, crop
prices and yields per ha do not change during the T years of the planning period, which is rather unrealistic.

If prices or yields change and the current stationary cropping plan X ðjÞ is not optimal anymore, we still

need a multi-year LP-model to transform X ðjÞ into the optimal stationary solution. Also, we may not use

the possibility of discounting future revenues.
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Another situation in which Proposition 3.2 is not valid anymore is when we include the cropping
plan from the year before t ¼ 1. As explained in Section 2.2, this may be done by defining parame-

ters x0ðjÞ, ðjÞ 2 S, analogous to the variables XtðjÞ and adding the constraint (3.2) for t ¼ 1 with

X0ðjÞ ¼ x0ðjÞ.

Remark 3.4. The cropping plans XtðjÞ, t ¼ 1; 2; . . . ; T , ðjÞ 2 S, only indicate the sizes of the areas where in
year t the crop sequence ðjÞ is grown and not the locations of these areas on the A ha of land that is

available. For t ¼ 2; 3; . . . ; T , any feasible solution ZtððiÞ; ðjÞÞ of (2.5)–(2.8) describes a feasible allocation of

the crops in year t. Moreover, for year t ¼ 1 any ordering of X1ðjÞ, ðjÞ 2 S, is a feasible allocation.
We assume that the location of the areas XtðjÞ is immaterial in the sense that it has no influence on the

required amount per ha of each input and on the yield per ha. However, the freedom of choosing a feasible

ZtððiÞ; ðjÞÞ and the allocation in year t ¼ 1 may still be used to obtain ‘good’ locations for the crops in each

year.

Remark 3.5. The amounts of inputs used per ha and the yield per ha usually depend not only on the type of

crop, but also on the method of cultivation. For example, the yield per ha of maize may be influenced by the

amount of manure that is applied per ha. For this reason, it may be appropriate to define decision variables
Xtðf ; ðjÞÞ indicating the area where crop sequence ðjÞ is grown and method of cultivation f is used. The

model (3.1)–(3.5) may then be changed as follows. Since we assume that the crop succession requirements

do not depend on the methods of cultivation that are used, we may set
XtðjÞ ¼
X
f

Xtðf ; ðjÞÞ; ðjÞ 2 S; t ¼ 1; 2; . . . ; T ;
and leave the crop succession constraints (3.2) unchanged. Also (3.3) remains the same. The constraints

(3.4) may be changed into
X
ðjÞ2S

X
f

atðk; f ; ðjÞÞXtðf ; ðjÞÞ6 btðkÞ; k ¼ 1; 2; . . . ;K; t ¼ 1; 2; . . . ; T :
In this way, it is expressed that the required amounts of inputs and the yield may also depend on the

method of cultivation f . Analogously, the objective function (3.1) may be changed into
Maximize
XT
t¼1

X
ðjÞ2S

X
f

ctðf ; ðjÞÞXtðf ; ðjÞÞ:
Also, we may replace (3.5) by
X1ðf ; ðjÞÞ � XTþ1ðf ; ðjÞÞ ¼ 0 8f ; 8ðjÞ 2 S:
For this new model we then have an analogous result as Proposition 3.2 in terms of the decision variables

Xtðf ; ðjÞÞ.
Notice that when m ¼ 1, the decision variables indicate the size of the area where a single crop is grown.

Hence, it is not possible to express a dependence of the yield of the current crop on the crop grown last year

on the same piece of land. Therefore, in this case one may prefer to use the decision variables for the

situation m ¼ 2.

3.2. Crop rotation cycles

In this section we discuss how to determine, for a stationary cropping plan X ðjÞ, the pieces of land where

each crop should be cultivated each year. We show that a stationary cropping plan is composed of several

crop rotation cycles. How to determine these rotation cycles and the sizes of the areas where they should be
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applied, is explained in the proof of Proposition 3.7. We define a crop rotation cycle in terms of sequences
in S as follows.

Definition 3.6. A collection of sequences C ¼ fðjÞ1; ðjÞ2; . . . ; ðjÞhg � S, hP 1, is called a crop rotation
cycle if ðjÞk is allowed to succeed ðjÞk�1

, k ¼ 2; 3; . . . ; h, and ðjÞ1 is allowed to succeed ðjÞh.

Hence, a crop rotation cycle is defined as a collection of sequences in S, that is allowed to be applied

cyclically on the same piece of land. If h ¼ 1 in Definition 3.6, then the single sequence in C consists of m
times the same crop. Hence, the same crop is grown permanently. If h ¼ 2, then cycle C consists of two
different crops which are alternated. For h ¼ 3 there are two possibilities: either a sequence of three different

crops is repeated, or periods of two years the same crop are alternated with one-year periods in which a

different crop is grown. In general, the cycle C consists of at most h different crops.

In Definition 3.6, the number of sequences in C and the length in years of the crop rotation cycle defined

by C, are both equal to h. For h6m, this may not seem obvious. However, in this case there holds for any

sequence ðjÞ in C,
jk ¼ jkþh; k ¼ 1; . . . ;m� h:
The main result of this section is formulated in the following proposition.

Proposition 3.7. Let X ðjÞ, ðjÞ 2 S, satisfy (3.7) and (3.8). Define
SX ¼ fðjÞ 2 S : X ðjÞ > 0g: ð3:10Þ
Then there exist crop rotation cycles Cs � SX , s ¼ 1; 2; . . . ; v, which can be applied such that in every year the
area where sequence ðjÞ is grown, is equal to X ðjÞ, ðjÞ 2 SX .

Proof. Let X ðjÞ, ðjÞ 2 S, satisfy (3.7) and (3.8). Then, by Theorem 2.5, there exists a feasible solution

ZððiÞ; ðjÞÞ, ðiÞ; ðjÞ 2 S, ðjÞ 2 COMPðiÞ, to the following system:
X
ðjÞ2COMPðiÞ

ZððiÞ; ðjÞÞ ¼ X ðiÞ; 8ðiÞ 2 S; ð3:11Þ

X
ðiÞ2S:ðjÞ2COMPðiÞ

ZððiÞ; ðjÞÞ ¼ X ðjÞ; 8ðjÞ 2 S; ð3:12Þ

ZððiÞ; ðjÞÞP 0; 8ðiÞ; ðjÞ 2 S; ðjÞ 2 COMPðiÞ; ð3:13Þ

ZððiÞ; ðjÞÞ ¼ 0 if ðjÞ 62 SUCðiÞ: ð3:14Þ
We choose a feasible solution Z of (3.11)–(3.14). Next, we construct a network of nodes ðjÞ 2 SX . There is a
directed arc from node ðiÞ to node ðjÞ if and only if ZððiÞ; ðjÞÞ > 0. The value of ZððiÞ; ðjÞÞ is interpreted as

the flow from node ðiÞ to node ðjÞ. The total flow in the network equals A, since by (3.8), (3.10), (3.11) and

(3.12) there holds
X
ðiÞ2SX

X
ðjÞ2SX

ZððiÞ; ðjÞÞ ¼ A:
From (3.11) and (3.12) it can be concluded that for each node ðjÞ in the network, the total flow into ðjÞ is
equal to the total flow out of ðjÞ. Because of this flow conservation property, each node ðjÞ in the network is

contained in a flow cycle. Suppose node ðjÞ is contained in some flow cycle Cs. Let ws be the minimum flow

between two consecutive nodes in Cs, i.e.
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ws ¼ minfZððiÞ; ðkÞÞ : cycle Cs contains the arc ðiÞ ! ðkÞg:

Because of the flow conservation property we know that ws > 0. The flow in the whole network can be

described by a finite number of flow cycles Cs, s ¼ 1; 2; . . . ; v. Indeed, if a cycle C1 is deleted from the

network, i.e. the flow through the nodes in C1 is decreased by w1, then the flow conservation property still

holds for all nodes in the network. Hence, we may delete another cycle C2. In this way, the flow in the

network becomes zero after deleting a finite number of cycles.
The flow cycles C1; . . . ;Cv determine the values of ZððiÞ; ðjÞÞ completely, since
ZððiÞ; ðjÞÞ ¼
X

s:arc ðiÞ!ðjÞ in Cs

ws: ð3:15Þ
Let hs be given by
hs ¼ cardðCsÞ; s ¼ 1; 2; . . . ; v:
The procedure above splits up the transitions ZððiÞ; ðjÞÞ into flows ws in cycles Cs of lengths hs. Hence, there

holds
Xv
s¼1

hsws ¼ A: ð3:16Þ
From Definition 3.6 it is clear that a flow cycle Cs may be interpreted as a crop rotation cycle. Moreover,

when each rotation cycle Cs is applied on an area of hsws ha, then a rotation scheme can be constructed

where each year the area of crop sequence ðjÞ is X ðjÞ. This is done as follows.

In the first year, the total area of A ha is divided into v plots with sizes hsws, s ¼ 1; 2; . . . ; v. The plot for
cycle Cs is divided into hs parts of size ws. On each part a different ðjÞ in Cs is grown. In the following years,

each part of the plot for Cs follows the schedule dictated by the rotation cycle Cs. By (3.16), it follows that

all land is used. Moreover, by (3.15) and (3.12), the area for ðjÞ 2 SX is equal to
X
ðiÞ2SX

X
s:arc ðiÞ!ðjÞ in Cs

ws ¼
X
ðiÞ2SX

ZððiÞ; ðjÞÞ ¼ X ðjÞ:
This completes the proof of Proposition 3.7. h

Remark 3.8. In the proof of Proposition 3.7 there may be many possible ways of choosing the cycles
C1; . . . ;Cv. For example, a different feasible solution Z of (3.11)–(3.14) may be taken. Also, the order of

picking the cycles may be varied. Or we may choose to consider only cycles Cs which do not contain the

same sequence ðjÞ more than once. Another possibility is to decrease the flow in cycle Cs by a quantity less

than ws.

The cropping plan X is required to satisfy only (3.7) and (3.8). We may for example take X to be an

optimal solution of (3.6)–(3.9). The transitions Z satisfying (3.11)–(3.14) may also be chosen by using

preference criteria, e.g. some objective function. If X and Z are chosen optimal (in some sense), then

C1; . . . ;Cv may be called optimal crop rotation cycles.
4. Preprocessing: Reducing the number of decision variables by combining crop sequences

Here we leave the LP-context of the previous section and reconsider the crop succession constraints

(2.10). We show that some groups of admissible sequences of length m with the same last crop may be

combined without losing crop succession information. As a result, the number of decision variables and the

number of equations in (2.10) is reduced. It should be noted that our aim is to find groups of sequences that
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can be combined without losing crop succession information. This does not imply that they also have to be
combined. For example, when using model (3.1)–(3.5) one may choose not to combine certain admissible

sequences ðiÞ and ðjÞ when cðiÞ 6¼ cðjÞ or aðk; ðiÞÞ 6¼ aðk; ðjÞÞ for some input k.
In Section 2.1 it is stated that to determine the feasible cropping plans for year t, it is sufficient to know

(a) which crops have been grown in the years t � m; . . . ; t � 1 on each part of the available land, and (b) all

admissible sequences of length mþ 1. Here we argue that, given the crop succession information (b), in order

to satisfy the crop succession requirements it may not be necessary to know exactly which crops have been

grown in the years t � m; . . . ; t � 1 on each part of the available land. In some cases, it may be sufficient to

know that in a certain year one crop from a certain set of crops has been grown on a certain part of the
available land. Hence, given the crop succession information (b), we do not need all information under (a) to

determine the feasible cropping plans for year t.
Recall that we expressed (a) in terms of Xt�1ðiÞ, ðiÞ 2 S, and (b) in terms of the sets SUCðiÞ, ðiÞ 2 S. In

this section, we combine certain groups of sequences in S into new sequences and thus obtain a new set of

sequences S�. A sequence ðjÞ 2 S� still has length m. The difference with sequences in S is that now the

element jk may represent a set of crops instead of only one crop. For each ðiÞ 2 S�, the set of successors

ðjÞ 2 S� is denoted by SUC�ðiÞ. We define decision variables XtðjÞ, ðjÞ 2 S�, analogous to (2.2). Now Xt�1ðiÞ,
ðiÞ 2 S�, do not contain all information under (a). However, the combinations may be chosen in such a way
that the sets SUC�ðiÞ, ðiÞ 2 S�, still contain all information under (b). Moreover, given Xt�1ðiÞ, ðiÞ 2 S�, and

SUC�ðiÞ, ðiÞ 2 S�, it is then still possible to determine all feasible cropping plans for year t. The combi-

nations of sequences in S for which this holds are determined by the sets SUCðiÞ, ðiÞ 2 S.
Forming combinations of groups of sequences in S as above, implies a reduction of the number of

decision variables. For each t, the number of decision variables XtðjÞ in (2.2) equals cardðSÞ and may be

of the order nm. In Section 4.1 we illustrate the process of combining sequences with a small-scale

example. A larger example is formulated to express the need for a sequence-combining algorithm. Such

an algorithm is presented in Section 4.2. In Section 4.3 we show that when this algorithm is used to
combine sequences, the information under (b) above is preserved. Moreover, the cropping plans Xt�1ðiÞ,
ðiÞ 2 S�, and XtðjÞ, ðjÞ 2 S�, are compatible if and only if crop succession constraints analogous to (2.10)

are satisfied.

4.1. A small-scale example

Consider n ¼ 3 crops and suppose that crop 1 may succeed crop 1 provided that crop 2 is grown on the

land two years before. In this case, ð1; 1; 1Þ and ð3; 1; 1Þ are the minimal inadmissible sequences. Hence,
m ¼ 2 and
S ¼ fð1; 1Þ; ð1; 2Þ; ð1; 3Þ; ð2; 1Þ; ð2; 2Þ; ð2; 3Þ; ð3; 1Þ; ð3; 2Þ; ð3; 3Þg:

The sets SUCðiÞ, ðiÞ 2 S, are given by
SUCð2; 1Þ ¼ fð1; 1Þ; ð1; 2Þ; ð1; 3Þg;
SUCð1; 1Þ ¼ SUCð3; 1Þ ¼ fð1; 2Þ; ð1; 3Þg;
SUCð1; 2Þ ¼ SUCð2; 2Þ ¼ SUCð3; 2Þ ¼ fð2; 1Þ; ð2; 2Þ; ð2; 3Þg;
SUCð1; 3Þ ¼ SUCð2; 3Þ ¼ SUCð3; 3Þ ¼ fð3; 1Þ; ð3; 2Þ; ð3; 3Þg:
As we see, SUCð1; 1Þ ¼ SUCð3; 1Þ. This implies that if in year t crop 1 is grown on a certain piece of land,

the possibilities for year t þ 1 do not depend on whether the crop grown in year t � 1 is crop 1 or crop 3.
Hence, intuitively, we may combine the sequences ð1; 1Þ and ð3; 1Þ into the new sequence ð1 or 3; 1Þ. The set
SUCð1 or 3; 1Þ is then equal to SUCð1; 1Þ. The set SUCð2; 1Þ contains ð1; 1Þ but not ð3; 1Þ. In this case, we

just replace ð1; 1Þ by the new sequence ð1 or 3; 1Þ. Logically, this is not a problem, since a succession of
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ð2; 1Þ by ð1 or 3; 1Þ implies that ð2; 1; 1Þ is grown. The same is true for SUCð1; 3Þ, which contains ð3; 1Þ but
not ð1; 1Þ. The sets SUCðiÞ change into
SUCð2; 1Þ ¼ fð1 or 3; 1Þ; ð1; 2Þ; ð1; 3Þg;
SUCð1 or 3; 1Þ ¼ fð1; 2Þ; ð1; 3Þg;
SUCð1; 2Þ ¼ SUCð2; 2Þ ¼ SUCð3; 2Þ ¼ fð2; 1Þ; ð2; 2Þ; ð2; 3Þg;
SUCð1; 3Þ ¼ SUCð2; 3Þ ¼ SUCð3; 3Þ ¼ fð1 or 3; 1Þ; ð3; 2Þ; ð3; 3Þg:
Since SUCð1; 2Þ ¼ SUCð2; 2Þ ¼ SUCð3; 2Þ, we may also combine ð1; 2Þ, ð2; 2Þ and ð3; 2Þ into the sequence

ðx; 2Þ, where x denotes all crops. The same holds for ð1; 3Þ, ð2; 3Þ and ð3; 3Þ. We combine them into ðx; 3Þ.
Using the same arguments as above, there holds
SUC�ð2; 1Þ ¼ fð1 or 3; 1Þ; ðx; 2Þ; ðx; 3Þg;
SUC�ð1 or 3; 1Þ ¼ fðx; 2Þ; ðx; 3Þg;
SUC�ðx; 2Þ ¼ fð2; 1Þ; ðx; 2Þ; ðx; 3Þg;
SUC�ðx; 3Þ ¼ fð1 or 3; 1Þ; ðx; 2Þ; ðx; 3Þg:
We changed the notation from SUCðiÞ to SUC�ðiÞ, since all SUC�ðiÞ are different and no more combi-
nations can be formed in the same way as above. Hence, the final set of sequences is
S� ¼ fð2; 1Þ; ð1 or 3; 1Þ; ðx; 2Þ; ðx; 3Þg:

Notice that if ðx; 3Þ is succeeded by ðx; 2Þ, then either ð1; 3; 2Þ, ð2; 3; 2Þ or ð3; 3; 2Þ is grown. From the sets

SUC�ðiÞ it can be concluded that ð1; 1; 1Þ and ð3; 1; 1Þ are the only inadmissible sequences. Hence, after

combining the sequences as we did, we still know all admissible sequences of length mþ 1 ¼ 3.

For ðiÞ 2 S� and t ¼ 1; 2; . . . ; T , we define a corresponding variable XtðiÞ as follows:

Xtð2; 1Þ: area where in year t crop 1 is grown and in year t � 1 crop 1 was grown.

Xtð1 or 3; 1Þ: area where in year t crop 1 is grown and in year t � 1 crop 1 or crop 3 was grown.

Xtðx; 2Þ: area where in year t crop 2 is grown.

Xtðx; 3Þ: area where in year t crop 3 is grown.

By forming the combinations as above we have reduced the number of decision variables from 9 to 4. With

respect to the compatibility of Xt�1ðiÞ, ðiÞ 2 S�, and XtðjÞ, ðjÞ 2 S�, the analogue of Theorem 2.5 holds. This
result is formulated in Theorem 4.7.

In the small-scale example above the combinations that may be formed can be determined by hand.

However, for an example with a larger number of crops n or a larger value of m it may be more convenient

to have a computer program which determines the sequences that may be combined. Such a larger example

is the following.

Example 4.1. Suppose we have the crops cotton (crop 1), sorghum (crop 2), soya-beans (crop 3) and fallow

land (crop 4). We assume that the following crop succession requirements have to be fulfilled.

(R1) After cotton and sorghum, there should be at least a one-year fallow.

(R2) Cotton may succeed cotton only after a two-year fallow in between.

(R3) Sorghum may succeed sorghum only after a two-year fallow in between.

(R4) Cotton may succeed sorghum only after a two-year fallow in between.

(R5) Soya-beans may be succeeded only by sorghum and fallow.

(R6) At least three out of every five years the land should lie fallow.
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Determining all minimal inadmissible sequences for (R1)–(R6) is a rather complex task. However, in

Appendix A an algorithm is presented which determines the minimal inadmissible sequences from a given

collection of inadmissible sequences. Using this algorithm, we obtain the minimal inadmissible sequences

for (R1)–(R6) and the value of m ¼ 4. Starting with the set S of admissible sequences of length 4 and using

the same reasoning as above, the following set S� is obtained:
ð3; 2; 4; 4Þ ð3; 4; 1; 4Þ ð3; 4; 3; 4Þ ð4; 3; 2; 4Þ ð4; 3; 4; 1Þ ð4; 3; 4; 3Þ ð4; 4; 1; 4Þ ð4; 4; 2; 4Þ;
ð4; 4; 3; 2Þ ð4; 4; 3; 4Þ ð4; 4; 4; 3Þ ðt; 4; 2; 4Þ ðs; 4; 3; 4Þ ðv; 4; 4; 1Þ ðv; 4; 4; 2Þ ðu; 4; 4; 3Þ;
ðv; 4; 4; 4Þ ð4; t; 4; 2Þ ð4; s; 4; 3Þ ð4; u; 4; 4Þ;
where s denotes crop 1 or crop 2, t denotes crop 1 or crop 3, u denotes crops 1, 2 or 3 and v denotes all four
crops.

4.2. An algorithm

Here, we present an algorithm that may be used to combine sequences as in Section 4.1. After the
combinations are formed, a sequence ðiÞ 2 S� has m elements and each element is either a single crop or a

combined crop. For each crop, the area for the current year must be known exactly. Therefore, for ðiÞ 2 S�,

we want im to be a single crop. The elements i1; . . . ; im�1 may be combined crops. Our algorithm consists of

an INITIALISATIONNITIALISATION STEPTEP followed by STEPTEP q, q ¼ 1; 2; . . . ;m� 1. In each STEPTEP q, we look for sequences

ðiÞ and ðjÞ with identical sets of successors and which only differ in the qth element, i.e.
ði1; . . . ; iq�1Þ ¼ ðj1; . . . ; jq�1Þ ¼ ðrÞ; iq 6¼ jq; ðiqþ1; . . . ; imÞ ¼ ðjqþ1; . . . ; jmÞ ¼ ðkÞ ð4:1Þ

for some ðrÞ and ðkÞ. For fixed ðrÞ and ðkÞ, there are at most n sequences satisfying this property. They are

then combined into the new sequence ððrÞ; y; ðkÞÞ, where y is the combined crop consisting of all qth (single)
crops of the sequences that are combined. When no more sequences can be combined in this way, the new set

of admissible sequences SðqÞ is determined. STEPTEP q ends by determining the new sets of successors SUCðqÞðiÞ,
ðiÞ 2 SðqÞ. A detailed description of the INITIALISATIONNITIALISATION STEPTEP and a general STEPTEP q are given below.

INITIALISATIONNITIALISATION STEPTEP

Set Sð0Þ ¼ S and SUCð0ÞðiÞ ¼ SUCðiÞ, ðiÞ 2 Sð0Þ, and go to STEPTEP 1.

STEPTEP q (q ¼ 1; . . . ;m� 1)

• For ðrÞ ¼ ðr1; . . . ; rq�1Þ and ðkÞ 2 f1; 2; . . . ; ngm�q
, define CðqÞ

ðrÞðkÞ � Sðq�1Þ by
CðqÞ
ðrÞðkÞ ¼ fðiÞ 2 Sðq�1Þ : there is a ðjÞ 2 Sðq�1Þ; such that SUCðq�1ÞðjÞ ¼ SUCðq�1ÞðiÞ and ð4:1Þ is satisfiedg:

• If CðqÞ
ðrÞðkÞ ¼ ; for all ðrÞ and ðkÞ, then set S� ¼ Sðq�1Þ and SUC�ðiÞ ¼ SUCðq�1ÞðiÞ, ðiÞ 2 S�, and STOP.

• For any CðqÞ
ðrÞðkÞ 6¼ ;, combine all sequences in CðqÞ

ðrÞðkÞ into the new sequence ððrÞ; y; ðkÞÞ, where y is the

combined crop consisting of all qth (single) crops of the sequences in CðqÞ
ðrÞðkÞ.

• Define the new set of sequences SðqÞ by deleting sequences ðiÞ 2 Sðq�1Þ which were combined above and

adding the new formed combinations.

• Construct the sets SUCðqÞðiÞ, ðiÞ 2 SðqÞ, as follows. Consider a pair ðiÞ; ðjÞ 2 SðqÞ.

(C1) If ðiÞ; ðjÞ 2 SðqÞ \ Sðq�1Þ, then ðjÞ 2 SUCðqÞðiÞ if and only if ðjÞ 2 SUCðq�1ÞðiÞ.
(C2) If ðiÞ 2 SðqÞ \ Sðq�1Þ and ðjÞ 2 SðqÞ n Sðq�1Þ, ðjÞ was formed from CðqÞ

ðrÞðkÞ, then ðjÞ 2 SUCðqÞðiÞ if and
only if there is a ðtÞ 2 CðqÞ

ðrÞðkÞ with ðtÞ 2 SUCðq�1ÞðiÞ.
(C3) If ðiÞ 2 SðqÞ n Sðq�1Þ, ðiÞ was formed from CðqÞ

ðpÞðlÞ, and ðjÞ 2 SðqÞ \ Sðq�1Þ, then ðjÞ 2 SUCðqÞðiÞ if and
only if ðjÞ 2 SUCðq�1ÞðsÞ, for any (all) ðsÞ 2 CðqÞ

ðpÞðlÞ.
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(C4) If ðiÞ 2 SðqÞ n Sðq�1Þ, ðiÞ was formed from CðqÞ
ðpÞðlÞ, and ðjÞ 2 SðqÞ n Sðq�1Þ, ðjÞ was formed from CðqÞ

ðrÞðkÞ,

then ðjÞ 2 SUCðqÞðiÞ if and only if there is a ðtÞ 2 CðqÞ
ðrÞðkÞ with ðtÞ 2 SUCðq�1ÞðsÞ, for any (all)

ðsÞ 2 CðqÞ
ðpÞðlÞ.

• If q6m� 2, then go to STEPTEP qþ 1. Else, set S� ¼ SðqÞ and SUC�ðiÞ ¼ SUCðqÞðiÞ, ðiÞ 2 S�, and STOP.

The construction of the sets SUCðqÞðiÞ, ðiÞ 2 SðqÞ, may need some explanation. In (C1), both ðiÞ and ðjÞ are
not combined in STEPTEP q and nothing changes. In (C2), sequence ðiÞ is not combined, while ðjÞ is formed in

STEPTEP q. In this case, ðjÞ is allowed to succeed ðiÞ if and only if some sequence ðtÞ, which is combined into ðjÞ,
is allowed to succeed ðiÞ. In Lemma 4.9, we will show that there is at most one such sequence ðtÞ. In (C3),
sequence ðiÞ is formed in STEPTEP q, while ðjÞ is not combined. Here, ðjÞ is allowed to succeed ðiÞ if and only if ðjÞ
is allowed to succeed some sequence ðsÞ, which is combined into ðiÞ. Notice that if such a sequence ðsÞ exists,
then ðjÞ is allowed to succeed all ðsÞ which are combined into ðiÞ, since, for these sequences ðsÞ, the sets

SUCðq�1ÞðsÞ are identical. In (C4), both ðiÞ and ðjÞ are formed in STEPTEP q. From (C2) and (C3) it follows that

ðjÞ is allowed to succeed ðiÞ if and only if some sequence ðtÞ, which is combined into ðjÞ, is allowed to succeed

some sequence ðsÞ, which is combined into ðiÞ. As in (C2), for each ðsÞ, there is at most one such sequence ðtÞ.
In the algorithm, the order of the steps is STEPTEP 1, STEPTEP 2,. . ., STEPTEP m� 1. In STEPTEP q combinations are

formed of sequences in the sets CðqÞ
ðrÞðkÞ. Since these sequences satisfy (4.1), there holds that for any ðjÞ 2 SðqÞ

all elements in ðjqþ1; . . . ; jmÞ are single crops.

It may seem that the order of the steps may be changed. However, this is not true. In Lemma 4.2 we

show that if, after steps 1; . . . ; q� 1, we execute STEPTEP p with p 2 fqþ 1; . . . ;m� 1g, then no sequences will

be combined.

The algorithm stops if no sequences are combined in the current step. This is correct, since in Lemma 4.3

it is shown that if in STEPTEP q� 1 no sequences are combined, then also in STEPTEP q no sequences will be

combined.

Lemma 4.2. Suppose the steps 1; . . . ; q� 1 have been executed in this order. If next STEPTEP p is executed, with
p 2 fqþ 1; . . . ;m� 1g, then no sequences will be combined.

Proof. Suppose to the contrary that in STEPTEP p some sequences are combined, i.e. for some ðiÞ; ðjÞ 2 Sðq�1Þ

with
ði1; . . . ; ip�1Þ ¼ ðj1; . . . ; jp�1Þ ¼ ðrÞ; ip 6¼ jp; ðipþ1; . . . ; imÞ ¼ ðjpþ1; . . . ; jmÞ ¼ ðkÞ ð4:2Þ

for some ðrÞ and ðkÞ, there holds SUCðq�1ÞðiÞ ¼ SUCðq�1ÞðjÞ. For any sequence ðxÞ 2 Sðq�1Þ the elements

xq; . . . ; xm are single crops. Hence, for any ðtÞ 2 SUCðq�1ÞðiÞ, there holds
js ¼ is ¼ ts�1; s ¼ qþ 1; . . . ;m:
But, since p 2 fqþ 1; . . . ;m� 1g, this implies ip ¼ jp which contradicts (4.2). Therefore, in STEPTEP p no

sequences will be combined. h

Lemma 4.3. If in STEPTEP q� 1 no sequences are combined, then also in STEPTEP q no sequences will be combined.

Proof. The proof is similar to the proof of Lemma 4.2. Suppose to the contrary that in STEPTEP q some se-

quences are combined, i.e. for some ðiÞ; ðjÞ 2 Sðq�1Þ satisfying (4.1) for some ðrÞ and ðkÞ, there holds

SUCðq�1ÞðiÞ ¼ SUCðq�1ÞðjÞ. Since no sequences are combined in STEPTEP q� 1, for any ðxÞ 2 Sðq�1Þ the elements

xq�1; . . . ; xm are single crops. Hence, for any ðtÞ 2 SUCðq�1ÞðiÞ, there holds
js ¼ is ¼ ts�1; s ¼ q; . . . ;m:
But this implies iq ¼ jq which contradicts (4.1). Therefore, in STEPTEP q no sequences will be combined. h
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Remark 4.4. An analogous statement as in Lemma 4.3 does not hold for an individual ðiÞ 2 Sðq�1Þ, i.e. when

ðiÞ is not combined in STEPTEP q� 1, it may still be combined in STEPTEP q if in STEPTEP q� 1 some other sequences

are combined. An example is as follows. Consider n ¼ 2 crops and suppose that all crop succession

information is given by the inadmissibility of ð2; 2; 2; 2Þ and ð2; 1; 2; 2Þ. Then these sequences are also

minimal inadmissible and m ¼ 3. If we execute our algorithm, then S� ¼ fðx; 1; 1Þ; ðx; 2; 1Þ; ð1; 1; 2Þ; ð1; 2; 2Þ;
ð2; x; 2Þg, where x denotes all crops. Hence, ð2; 1; 2Þ and ð2; 2; 2Þ are not combined in STEPTEP 1, while in STEPTEP

2 they are combined into ð2; x; 2Þ.
Remark 4.5.We have programmed the algorithm using the software package Matlab 5. Our computational

experience with the program learns that on a Pentium 4 PC, the algorithm terminates within approximately

15 minutes for values of n and m with nm 6 3200 approximately. To our opinion, this covers most practical

situations.
4.3. No loss of crop succession information

Here, we show that the information under (b), i.e. all admissible sequences of length mþ 1, is preserved
when sequences are combined in the algorithm of Section 4.2. First, we introduce some notation. Let
BðqÞ ¼ fði1; . . . ; imþ1Þ : ði1; . . . ; imÞ 2 SðqÞ; imþ1 2 f1; 2; . . . ; ng; such that there is a ðjÞ 2 SUCðqÞði1; . . . ; imÞ
with jm ¼ imþ1g:
Then BðqÞ contains all admissible sequences of length mþ 1 (containing both combined and single crops
as elements), based on SðqÞ and the sets SUCðqÞðiÞ, ðiÞ 2 SðqÞ. For any sequence ðiÞ of length m, possibly
containing combined crops, let
COMBðiÞ ¼ fðsÞ 2 f1; 2; . . . ; ngm : ðsÞ is contained in ðiÞg:

For ðiÞ 2 Sð0Þ we have COMBðiÞ ¼ ðiÞ. From the definition of the algorithm in Section 4.2 it follows that
COMBðiÞ � Sð0Þ, ðiÞ 2 SðqÞ. Moreover, for any q 2 f0; 1; . . . ;m� 1g, the sets COMBðiÞ, ðiÞ 2 SðqÞ, constitute

a disjoint partition of Sð0Þ.

To express the information in BðqÞ in terms of Sð0Þ and SUCð0ÞðiÞ, ðiÞ 2 Sð0Þ, we define
BðqÞ
0 ¼ fðs1; . . . ; smþ1Þ 2 f1;2; . . . ;ngmþ1

: there is an ðiÞ 2 BðqÞ such that ðs1; . . . ; smÞ 2 COMBði1; . . . ; imÞ
and imþ1 ¼ smþ1g:
Notice that Bð0Þ
0 ¼ Bð0Þ contains all admissible sequences of length mþ 1 (containing only single crops

as elements), i.e. all information under (b). We have the following result.

Proposition 4.6. Suppose that in STEPTEP q some sequences are combined. Then there holds
BðqÞ
0 ¼ Bð0Þ

0 :
The proof of Proposition 4.6 is presented below. Proposition 4.6 shows that, by combining sequences in the

way the algorithm prescribes, all information under (b) is preserved. As a consequence, the results of

Theorem 2.5, Section 2.3, Proposition 3.2 and 3.7 are also valid for the decision variables XtðjÞ, ðjÞ 2 S� and
the sets SUC�ðiÞ, ðiÞ 2 S�. The analogue of Theorem 2.5 is as follows.

We consider sets I ; J � S� satisfying
ðjÞ 62 SUC�ðiÞ for all ðiÞ 2 I and all ðjÞ 2 J : ð4:3Þ
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Theorem 4.7. Assume that (2.3) holds for t � 1 and t. Then the cropping plans Xt�1ðiÞ, ðiÞ 2 S�, and XtðjÞ,
ðjÞ 2 S�, are compatible if and only if
X

ðiÞ2I
Xt�1ðiÞ þ

X
ðjÞ2J

XtðjÞ6A; 8I ; J � S satisfying ð4:3Þ: ð4:4Þ
For the whole planning period of T years the crop succession requirements are satisfied if and only if

(4.4) holds for t ¼ 2; 3; . . . ; T . Since the last crop of any sequence in S� is a single crop, the knowledge of

XtðjÞ, t ¼ 1; 2; . . . ; T , ðjÞ 2 S�, implies that for each year 1; 2; . . . ; T the area for each crop 1; 2; . . . ; n is

known exactly.

Before we prove Proposition 4.6, we need the following definition and lemma.
Definition 4.8. Let ðiÞ and ðjÞ be combined sequences of length m. We say that ðjÞ is a compatible successor
of ðiÞ if there is an ðsÞ 2 COMBðiÞ and a ðtÞ 2 COMBðjÞ such that t1 ¼ s2; t2 ¼ s3; . . . ; tm�1 ¼ sm.

Notice that a sequence ðiÞ 2 SðqÞ, qP 1, may have more than n compatible successors ðjÞ 2 SðqÞ. An example

can be found in Remark 4.4, where n ¼ 2 and ð2; x; 2Þ 2 S� has three compatible successors: ðx; 2; 1Þ, ð1; 2; 2Þ
and ð2; x; 2Þ.

Lemma 4.9. Suppose ðiÞ 2 Sðq�1Þ and CðqÞ
ðrÞðkÞ 6¼ ;. Then there is at most one ðtÞ 2 CðqÞ

ðrÞðkÞ that is a compatible
successor of ðiÞ.

Proof. The proof is similar to the proofs of Lemmas 4.2 and 4.3. Let ðsÞ; ðtÞ 2 CðqÞ
ðrÞðkÞ, with ðtÞ a compatible

successor of ðiÞ. Suppose to the contrary that also ðsÞ is a compatible successor of ðiÞ. For any sequence

ðxÞ 2 Sðq�1Þ the elements xq; . . . ; xm are single crops. Hence, there holds
sk�1 ¼ tk�1 ¼ ik; k ¼ qþ 1; . . . ;m:
But this implies sq ¼ tq which contradicts the fact that ðsÞ; ðtÞ 2 CðqÞ
ðrÞðkÞ. Therefore, if C

ðqÞ
ðrÞðkÞ 6¼ ;, then, for any

ðiÞ 2 Sðq�1Þ, there is at most one ðtÞ 2 CðqÞ
ðrÞðkÞ that is a compatible successor of ðiÞ. h

Proof of Proposition 4.6. We will show that, if in STEPTEP q some sequences are combined, then BðqÞ
0 ¼ Bðq�1Þ

0 .

Since q 2 f1; 2; . . . ;m� 1g is arbitrary, this completes the proof.

Consider an arbitrary sequence ðk1; . . . ; kmþ1Þ 2 f1; 2; . . . ; ngmþ1
and suppose that
ðk1; . . . ; kmÞ 2 COMBðsÞ; ðsÞ 2 Sðq�1Þ;

ðk2; . . . ; kmþ1Þ 2 COMBðtÞ; ðtÞ 2 Sðq�1Þ;

ðk1; . . . ; kmÞ 2 COMBðiÞ; ðiÞ 2 SðqÞ;

ðk2; . . . ; kmþ1Þ 2 COMBðjÞ; ðjÞ 2 SðqÞ:
Notice that ðsÞ; ðtÞ; ðiÞ and ðjÞ above are uniquely determined. If in STEPTEP q the sequence ðiÞ is formed from
some group of sequences, then this group contains ðsÞ. The same is true for ðjÞ and ðtÞ. For ðiÞ and ðjÞ we
distinguish the situations (C1)–(C4) of Section 4.2.

(C1) ðiÞ ¼ ðsÞ and ðjÞ ¼ ðtÞ.
(C2) ðiÞ ¼ ðsÞ and ðjÞ is formed from a group containing ðtÞ.
(C3) ðiÞ is formed from a group containing ðsÞ and ðjÞ ¼ ðtÞ.
(C4) ðiÞ is formed from a group containing ðsÞ and ðjÞ is formed from a group containing ðtÞ.
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Suppose ðk1; . . . ; kmþ1Þ 2 Bðq�1Þ
0 . Then it follows that ðs1; . . . ; sm; tmÞ 2 Bðq�1Þ and, hence, that

ðtÞ 2 SUCðq�1ÞðsÞ. To obtain that ðk1; . . . ; kmþ1Þ 2 BðqÞ
0 , we need to show that ðjÞ 2 SUCðqÞðiÞ. But, since

ðtÞ 2 SUCðq�1ÞðsÞ, this follows for each of (C1)–(C4) from the definition of the algorithm in Section 4.2.

It remains to show that if ðk1; . . . ; kmþ1Þ 62 Bðq�1Þ
0 , then ðk1; . . . ; kmþ1Þ 62 BðqÞ

0 . When ðk1; . . . ; kmÞ 62 Sð0Þ, this

holds trivially. We will therefore assume that ðk1; . . . ; kmÞ 2 Sð0Þ. Suppose that ðk2; . . . ; kmþ1Þ 62 Sð0Þ. Let ðiÞ be
as above. If ðk1; . . . ; kmþ1Þ 2 BðqÞ

0 , then ði1; . . . ; im; kmþ1Þ 2 BðqÞ and, hence, there exists a ðjÞ 2 SðqÞ with

ðjÞ 2 SUCðqÞðiÞ and jm ¼ kmþ1. But this implies ðk2; . . . ; kmþ1Þ 2 COMBðjÞ which contradicts

ðk2; . . . ; kmþ1Þ 62 Sð0Þ. Therefore, if ðk2; . . . ; kmþ1Þ 62 Sð0Þ, then ðk1; . . . ; kmþ1Þ 62 BðqÞ
0 .

Next, we give the proof for the case ðk2; . . . ; kmþ1Þ 2 Sð0Þ. Let ðsÞ; ðtÞ; ðiÞ and ðjÞ be as above. Since

ðk1; . . . ; kmþ1Þ 62 Bðq�1Þ
0 , this implies that ðs1; . . . ; sm; tmÞ 62 Bðq�1Þ and, hence, that ðtÞ 62 SUCðq�1ÞðsÞ. However,

since ðk1; . . . ; kmÞ 2 COMBðsÞ and ðk2; . . . ; kmþ1Þ 2 COMBðtÞ, ðtÞ is a compatible successor of ðsÞ. Analo-

gously, ðjÞ is a compatible successor of ðiÞ. The proof will be complete if we show that ðjÞ 62 SUCðqÞðiÞ.
Again, we distinguish the cases (C1)–(C4) above.

For (C1) there is nothing to prove. For (C2), it follows from Lemma 4.9 that ðtÞ is the only compatible

successor of ðsÞ in the group of sequences from which ðjÞ is formed. Hence, from the defnition of the

algorithm in Section 4.2 it follows that ðtÞ 62 SUCðq�1ÞðsÞ implies ðjÞ 62 SUCðqÞðiÞ. Next, we consider (C3).
The sequences in the group from which ðiÞ is formed all have the same set SUCðq�1Þ as ðsÞ. Therefore,
ðjÞ ¼ ðtÞ 62 SUCðq�1ÞðsÞ implies ðjÞ 62 SUCðqÞðiÞ. Combining the arguments for (C2) and (C3), it can be seen

that also for (C4) there holds ðjÞ 62 SUCðqÞðiÞ. This completes the proof.
5. Conclusion

In the paper we have discussed crop succession requirements from a mathematical programming point of
view. We assumed that all crop succession information is given in the form of crop sequences which are not

allowed (i.e. not advisable) to be cultivated on the same piece of land. These sequences are called inad-

missible. The inadmissibility of a sequence is assumed not to depend on the year it was started. A key role is

played by so-called minimal inadmissible sequences, i.e inadmissible sequences not containing inadmissible

subsequences. If mþ 1 is the length of the longest minimal inadmissible sequence, then we need to consider

the cropping plans of the years t � m; . . . ; t � 1 in order to determine the feasible cropping plans for year t.
In Appendix A a method was presented to determine the minimal inadmissible sequences from an arbitrary

collection of inadmissible sequences.
We defined decision variables representing the size of the area where a certain admissible sequence of m

crops is applied, the last crop being grown in year t. In Section 2.2 we showed that, for a piece of land of

fixed size, the crop succession requirements can be written as linear constraints in the decision variables.

The number of admissible sequences of length m (and, hence, the number of decision variables) may be

reduced, without losing crop succession information, by forming suitable combinations of sequences. An

algorithm which determines such combinations of sequences was presented in Section 4, together with a

proof of its correctness.

In Section 3 we considered a generic LP-model for agricultural production planning with a finite
planning horizon of T years, containing the linear crop succession constraints. We considered a sta-

tionary version of the model in which the parameters do not depend on the year index and the cropping

plan for year T þ 1 is also taken into account and is required to be identical to the cropping plan of year

1. We showed that any optimal solution of this model has a stationary version with the same objective

value. This implies that, when using this model, the optimal production strategy may be chosen the

same zin all years of the planning period. In Section 3.2 we presented a method to determine the pieces

of land where each crop should be cultivated each year, when such a stationary cropping plan is to be

applied.
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Appendix A. Determining minimal inadmissible sequences

The notion of a minimal inadmissible sequence plays an important role in the analysis above. The length

of the longest minimal inadmissible sequence indicates how many years we should look into the past when

determining feasible cropping plans for next year. Above, we implicitly assumed that all minimal inad-

missible sequences were known. In practice, however, it may happen that only a collection of inadmissible

sequences is given. Here, we discuss how the minimal inadmissible sequences may be determined from such

a collection, under the assumption that the given collection of inadmissible sequences represents all crop
succession information. The following example shows that, in general, this may not be a trivial task. Recall

that inadmissible sequences are defined by conditions (I1)–(I3) in Section 2.1.

Example A.1. Suppose we consider n ¼ 2 crops and all crop succession information is represented by the

inadmissibility of the sequences ð1; 1; 1; 1Þ and ð2; 1; 1Þ. Then there is only one minimal inadmissible se-

quence, namely ð1; 1Þ. Indeed, suppose we have cultivated ð1; 1Þ in years t � 1 and t. Then we have grown

crop 1 in year t � 2, since ð2; 1; 1Þ is inadmissible. And also in year t � 3 we must have grown crop 1.

Otherwise we have a sequence ð2; 1; 1Þ for the years t � 3; t � 2; t � 1. But now we have cultivated crop 1 for
four successive years, which is also inadmissible. Therefore, ð1; 1Þ is inadmissible. Since ð1; 1; 1; 1Þ and

ð2; 1; 1Þ both contain ð1; 1Þ, they are not minimal inadmissible. The sequence ð1; 1Þ, however, is minimal

inadmissible, since the cultivation of crop 1 is not entirely prohibited.

The example above can still be worked out by hand. However, to determine the minimal inadmissible

sequences for (R1)–(R6) in Example 4.1 is more difficult. In this case, it is more convenient to have a

computer program which determines all minimal inadmissible sequences from a given collection of inad-

missible sequences. Below, we present such an algorithm. We assume that an initial collection of inad-
missible sequences is given by the sets Mh, hP 1, where
Mh ¼ fðiÞ 2 f1; 2; . . . ; ngh : ðiÞ is inadmissibleg:

Suppose the longest inadmissible sequence has length H þ 1, i.e.
H þ 1 ¼ maxfh : Mh 6¼ ;g: ðA:1Þ

As above, we assume that H P 1. If the collection [Hþ1

h¼1 Mh represents all crop succession information, then

its set of minimal inadmissible sequences is unique and the longest minimal inadmissible sequence has a

length of at most H þ 1.

Our algorithm consists of three steps: STEP M1TEP M1, STEP M2TEP M2 and STEP M3TEP M3. Before we determine the minimal

inadmissible sequences, we first determine all inadmissible sequences based on the sets Mh,

h ¼ 1; 2; . . . ;H þ 1. This is done in STEP M1TEP M1 and STEP M2TEP M2.

STEP M1TEP M1: For h ¼ 1; 2; . . . ;H , do the following.
1.1 For each ðiÞ 2 Mh, for each g 2 fhþ 1; . . . ;H þ 1g, if there is a ðjÞ 2 f1; 2; . . . ; ngg with ðjÞ 62 Mg and

ðiÞ is a subsequence of ðjÞ, then add ðjÞ to Mg.
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In STEP M1TEP M1 we enlarge the collection of inadmissible sequences by including all sequences which contain
an inadmissible subsequence in some set Mh. However, after STEP M1TEP M1 the collection of inadmissible se-

quences does not yet contain all inadmissible sequences that can be found, using the sets Mh. We also need

to include sequences (not contained in any Mh) of which the inadmissibility follows from the sets Mh by

logical reasoning. An example is the sequence ð1; 1Þ in Example A.1. Such sequences are identified by

making use of similar sets as SUCðiÞ in (2.4). For ðiÞ 2 f1; 2; . . . ; ngh, we define
SUChðiÞ ¼ fðjÞ 2 f1; 2; . . . ; ngh : ðjÞ 62 Mh; ðj1; . . . ; jh�1Þ ¼ ði2; . . . ; ihÞ and ððiÞ; jhÞ 62 Mhþ1g:

Hence, ðjÞ 2 SUChðiÞ if and only if ðjÞ is allowed to succeed ðiÞ according to Mh and Mhþ1. Notice that if

SUChðiÞ ¼ ;, then ðiÞ is inadmissible. Also, if ðiÞ 2 f1; 2; . . . ; ngh is not contained in any set SUChðjÞ, then
ðiÞ is inadmissible.

STEP M2TEP M2: For h ¼ H ;H � 1; . . . ; 1, do the following.

2.1 For all sequences ðiÞ 2 f1; 2; . . . ; ngh with ðiÞ 62 Mh, determine the sets SUChðiÞ based on the informa-

tion in Mhþ1.

2.2 Let Dh ¼ fðiÞ 2 f1; 2; . . . ; ngh nMh : SUChðiÞ ¼ ; or ðiÞ 62 SUChðjÞ; 8ðjÞ 62 Mhg. If Dh 6¼ ;, then go

to STEPTEP 2.3, else NEXT h.
2.3 Add all ðiÞ 2 Dh to Mh. For each ðiÞ 2 Dh, for each g 2 fhþ 1; . . . ;H þ 1g, if there is a

ðjÞ 2 f1; 2; . . . ; ngg with ðjÞ 62 Mg and ðiÞ is a subsequence of ðjÞ, then add ðjÞ to Mg. Start again at
the beginning of STEP M2TEP M2.

If in STEPTEP 2.2 some inadmissible sequences are found, they are added to Mh. Moreover, all sequences

containing these sequences are inadmissible too and are added to Mg, gP hþ 1. This may change the sets

SUCgðiÞ, gP h. Therefore, when inadmissible sequences are found, we start again at the beginning of STEPTEP

M2M2. It can be seen that after STEP M2TEP M2 the sets M1;M2; . . . ;MHþ1 contain all inadmissible sequences that can

be found based on the initial collection of inadmissible sequences. However, the addition in STEPTEP 2.3 of

sequences to Mg, g 2 fhþ 1; . . . ;Hg, is not necessary, since at this point they are already contained in the
sets Mg, g 2 fhþ 1; . . . ;Hg. Moreover, also the addition of sequences to MHþ1 is not necessary. In Prop-

osition A.3 it is shown that we may replace STEPTEP 2.3 by

2.3* Add all ðiÞ 2 Dh to Mh and go to STEPTEP 2.1.

In STEP M3TEP M3 we determine the minimal inadmissible sequences by deleting inadmissible sequences that

contain an inadmissible subsequence.

STEP M3TEP M3: For h ¼ 1; 2; . . . ;H , do the following.

3.1 For each ðiÞ 2 Mh, for each g 2 fhþ 1; . . . ;H þ 1g, if there is a ðjÞ 2 Mg that contains ðiÞ as a sub-

sequence, then delete ðjÞ from Mg.

In this way, we end up with all minimal inadmissible sequences in the sets M1;M2; . . . ;MHþ1. There holds
mþ 1 ¼ maxfh : Mh 6¼ ;g:

Notice that m may be smaller than H , as can be seen from Example A.1.

There are several ways in which the algorithm above can be made faster. A first observation is that the

sequences which are added to the sets Mh in STEP M1TEP M1 and STEPTEP 2.3 (for gP hþ 1) are not minimal

inadmissible, since they contain an inadmissible subsequence. Hence, in STEP M3TEP M3, these sequences may be
deleted without examination. Another change by which the procedure may become faster, is by starting

with STEP M3TEP M3, followed by a recalculation of H in (A.1). Since STEP M3TEP M3 excludes sequences from the initial
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collection which are not minimal inadmissible, after STEP M3TEP M3 the value of H may have decreased. As
a result, the algorithm consisting of STEP M3TEP M3, STEP M1TEP M1, STEP M2TEP M2 and again STEP M3TEP M3, has more steps but

may be faster.

Remark A.2. We have programmed a version of the algorithm above using the software package Matlab 5.

We start with STEP M3TEP M3, followed by STEP M1TEP M1, STEP M2TEP M2 and again STEP M3TEP M3, and use STEPTEP 2.3� instead of

STEPTEP 2.3. Our computational experience with the program learns that on a Pentium 4 PC, the algorithm

terminates within approximately 20 minutes for values of n and H with nH 6 3400 approximately. To our

opinion, this covers most practical situations.

Proposition A.3. Suppose an initial collection Mh, hP 1, is given and STEP M1TEP M1 has been executed. Suppose
that in STEPTEP 2.2 Dh 6¼ ; for some h. Then there holds for any ðiÞ 2 Dh

(F1) If h6H � 1, then after STEP M2TEP M2 has been executed for hþ 1, the sets Mg, g 2 fhþ 1; . . . ;Hg, contain
all sequences having ðiÞ as a subsequence.

(F2) In STEPTEP 2.3 it is not necessary to add sequences to MHþ1, containing ðiÞ as a subsequence.

Proof. First, we prove (F1). Suppose STEP M1TEP M1 has been executed. Observe that there holds for

h ¼ 1; 2; . . . ;H ;
ðsÞ 2 Mh ) all ðtÞ 2 f1; 2; . . . ; ngg containing ðsÞ are in Mg; g ¼ hþ 1; . . . ;H þ 1: ðA:2Þ
Suppose that Dh 6¼ ; in STEPTEP 2.2 for some h 2 f1; 2; . . . ;H � 1g. Let ðiÞ 2 Dh. Suppose that SUChðiÞ ¼ ;.
Then after STEP M2TEP M2 has been executed for hþ 1, there holds for all x 2 f1; 2; . . . ; ng,

(E1) If ði2; . . . ; ih; xÞ 62 Mh, then ððiÞ; xÞ 2 Mhþ1,
(E2) If ððiÞ; xÞ 62 Mhþ1, then ði2; . . . ; ih; xÞ 2 Mh.

Since the set Mh is still the same as after STEP M1TEP M1 and no sequences have been deleted from Mhþ1, it follows

from (A.2) that (E2) is impossible. Therefore, if SUChðiÞ ¼ ;, then after STEP M1TEP M1
ððiÞ; xÞÞ 2 Mhþ1; 8x 2 f1; 2; . . . ; ng: ðA:3Þ
Notice that this implies that any sequence ðy; ðiÞÞ, y 2 f1; 2; . . . ; ng, not contained in Mhþ1 has an empty set

SUChþ1ðy; ðiÞÞ. However, such sequences ðy; ðiÞÞ do not exist, since they were added to Mhþ1 when STEP M2TEP M2

was executed for hþ 1. Therefore, after STEP M2TEP M2 has been executed for hþ 1, there holds
ðy; ðiÞÞ 2 Mhþ1; 8y 2 f1; 2; . . . ; ng: ðA:4Þ
Hence, it follows from (A.3) and (A.4) that after STEP M2STEP M2 has been executed for hþ 1, all sequences

containing ðiÞ are contained in Mhþ1. Since (A.3) holds after STEP M1TEP M1, it follows from (A.2) that after STEPTEP

M1M1 all sequences of the form ðy; ðiÞ; xÞ and ððiÞ; x; yÞ, x; y 2 f1; 2; . . . ; ng, are contained in Mhþ2. But this

implies that sequences of the form ðx; y; ðiÞÞ, x; y 2 f1; 2; . . . ; ng, have an empty set SUChþ2ðx; y; ðiÞÞ. Hence,

all sequences of the form ðx; y; ðiÞÞ were added to Mhþ2 when STEP M2TEP M2 was executed for hþ 2. Therefore,

after STEP M2TEP M2 has been executed for hþ 1, all sequences containing ðiÞ are contained in bothMhþ1 andMhþ2.

Analogously, it can be shown that after STEP M2TEP M2 has been executed for hþ 1, all sequences containing ðiÞ
are contained in Mg for g ¼ hþ 1; . . . ;H .

Suppose next that ðiÞ 2 Dh due to ðiÞ 62 SUChðjÞ for all ðjÞ 62 Mh. Then after STEP M2TEP M2 has been executed

for hþ 1, there holds for all x 2 f1; 2; . . . ; ng,

(E3) If ðx; i1; . . . ; ih�1Þ 62 Mh, then ðx; ðiÞÞ 2 Mhþ1,
(E4) If ðx; ðiÞÞ 62 Mhþ1, then ðx; i1; . . . ; ih�1Þ 2 Mh.



428 W.K. Klein Haneveld, A.W. Stegeman / European Journal of Operational Research 166 (2005) 406–429
Since the set Mh is still the same as after STEP M1TEP M1 and no sequences have been deleted from Mhþ1, it follows

from (A.2) that (E4) is impossible. Therefore, if ðiÞ 62 SUChðjÞ for all ðjÞ 62 Mh, then after STEP M1TEP M1,
ðx; ðiÞÞÞ 2 Mhþ1; 8x 2 f1; 2; . . . ; ng: ðA:5Þ
Notice that this implies that any sequence ððiÞ; yÞ, y 2 f1; 2; . . . ; ng, not contained in Mhþ1 is not contained

in any set SUChþ1. However, such sequences ððiÞ; yÞ do not exist, since they were added to Mhþ1 when STEPTEP

M2M2 was executed for hþ 1. Therefore, after STEP M2TEP M2 has been executed for hþ 1, there holds
ððiÞ; yÞ 2 Mhþ1; 8y 2 f1; 2; . . . ; ng: ðA:6Þ
Hence, it follows from (A.5) and (A.6) that after STEP M2TEP M2 has been executed for hþ 1, all sequences

containing ðiÞ are contained in Mhþ1. Since (A.5) holds after STEP M1TEP M1, it follows from (A.2) that after STEPTEP

M1M1 all sequences of the form ðy; x; ðiÞÞ and ðx; ðiÞ; yÞ, x; y 2 f1; 2; . . . ; ng, are contained in Mhþ2. But this

implies that sequences of the form ððiÞ; x; yÞ, x; y 2 f1; 2; . . . ; ng, are not contained in any set SUChþ2.

Hence, all sequences of the form ððiÞ; x; yÞ were added to Mhþ2 when STEP M2TEP M2 was executed for hþ 2.
Therefore, after STEP M2TEP M2 has been executed for hþ 1, all sequences containing ðiÞ are contained in both

Mhþ1 and Mhþ2. Analogously, it can be shown that after STEP M2TEP M2 has been executed for hþ 1, all sequences

containing ðiÞ are contained in Mg for g ¼ hþ 1; . . . ;H .

Notice that when h is the first (i.e. largest) h for which Dh 6¼ ; in STEPTEP 2.2, an analogous proof as above

shows that after STEP M1TEP M1 all sequences containing an ðiÞ 2 Dh are contained in the sets Mg,

g ¼ hþ 1; . . . ;H . This completes the proof of (F1).

Next, we prove (F2). First, we consider the case h ¼ H . Let ðiÞ 2 DH . In STEPTEP 2.3 sequences containing

ðiÞ as a subsequence are added toMHþ1. As a result, the sets SUCH may change. However, the same changes
in SUCH are obtained when ðiÞ is added to MH . This can be seen as follows. The sequences added to MHþ1

are of the form ðx; ðiÞÞ or ððiÞ; xÞ, for x 2 f1; 2; . . . ; ng. Therefore, as a result, only the sets SUCHðjÞ may

change for which either ðjÞ is a compatible successor of ðiÞ, i.e. ðj1; . . . ; jH�1Þ ¼ ði2; . . . ; iH Þ, or ðiÞ is a

compatible successor of ðjÞ, i.e. ði1; . . . ; iH�1Þ ¼ ðj2; . . . ; jHÞ. But these sets SUCH ðjÞ change in the same way

when ðiÞ is added to MH . This completes the proof for the case h ¼ H .

Next, we consider the case h6H � 1. Let ðiÞ 2 Dh. From the proof of (F1) it follows that all sequences

ðkÞ of length H containing ðiÞ are contained in MH after STEP M2TEP M2 has been executed for H . Sequences of

length H þ 1 containing ðiÞ are of the form ðx; ðkÞÞ or ððkÞ; xÞ, for x 2 f1; 2; . . . ; ng, where ðkÞ has length H
and contains ðiÞ. From the proof of (F2) for h ¼ H it follows that adding such sequences to MHþ1 will not

result in more inadmissible sequences of length H . This completes the proof of (F2). h

Proposition A.3 shows that STEPTEP 2.3 may be replaced by STEPTEP 2.3�. One may wonder whether it is

necessary to update the sets SUCh after the sequences in Dh have been added to Mh in STEPTEP 2.3�. In other

words, may we replace STEPTEP 2.3� by

Add all ðiÞ 2 Dh to Mh. NEXT h.

The following example shows that this is not the case.

Example A.4. Consider n ¼ 3 crops and start with M4 ¼ fð2; 1; 3; 2Þ; ð2; 1; 3; 1Þg and M3 ¼ fð3; 3; 1Þ;
ð3; 3; 2Þ; ð3; 3; 3Þg. Then H ¼ 3 and after STEP M1TEP M1 we have
M4 ¼ fð2; 1; 3; 2Þ; ð2; 1; 3; 1Þ; ð3; 3; s; tÞ; ðu; 3; 3; vÞ; s; t; u; v ¼ 1; 2; 3g:
Next, we execute STEP M2TEP M2. In STEPTEP 2.2 we have SUC3ð1; 3; 3Þ ¼ SUC3ð2; 3; 3Þ ¼ ;. Hence, ð1; 3; 3Þ and
ð2; 3; 3Þ are added toM3. When we go to STEPTEP 2.1 and change the sets SUC3, we find that SUC3ð2; 1; 3Þ ¼ ;.
Therefore, also ð2; 1; 3Þ is added to M3. For h ¼ 2, it is found that SUC2ð3; 3Þ ¼ ; and ð3; 3Þ is added to M2.

After STEP M3TEP M3, we obtain M4 ¼ ;, M3 ¼ fð2; 1; 3Þg and M2 ¼ fð3; 3Þg.
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