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Abstract

A method is proposed to write crop succession requirements as linear constraints in an LP-based model for agri-
cultural production planning. Crop succession information is given in the form of a set of inadmissible successions of
crops. The decision variables represent the areas where a certain admissible sequence of crops is cultivated. The number
of decision variables may be reduced by forming suitable combinations of crop sequences. For this purpose, an
algorithm is presented. Also, multi-year linear programming models for farm production planning containing crop
succession constraints are considered. It is shown that, under some regularity conditions, a stationary cropping plan is
an optimal solution of such a model. Finally, it is discussed how to determine, given a collection of inadmissible se-
quences, crop sequences which are inadmissible but do not contain inadmissible subsequences. The length of the longest
of these sequences determines the length of the crop sequences taken into account in the model.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In agricultural production planning it may happen, and this is often the case, that succession of certain
crops on the same piece of land is not allowed or not advisable. Otherwise soil fertility will decrease or
the crops may become susceptible to diseases, plagues or weeds. On the other hand, a certain succession
of crops may be recommended. We say that in these situations certain crop succession requirements have
to be fulfilled. For example, in some regions cotton should not be grown after cotton because remaining
seeds may cause pests; sorghum after sorghum may cause problems with the weed striga; potatoes
should not succeed potatoes because of the occurrence of nematodes in the soil. And soya-beans is
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recommended to alternate with grains in order to restore the fertility. Often, it is important to leave the
land lying fallow so that natural vegetation can restore the fertility of the soil. Maize and other grains
should, for instance, be followed by fallow. Or it might be advisable to let arable land alternate with
grassland for cattle. In practice, the crop succession requirements usually determine crop rotation cycles.
A crop rotation cycle is a sequence of crops (e.g. soya-beans, maize, fallow) which satisfies the crop
succession requirements if applied cyclically on the same piece of land. A crop rotation cycle is usually
implemented in such a way that each year there is approximately the same acreage for each of the crops
in the cycle. Often only few crop rotation cycles are taken into consideration, advised by e.g. staff of
agricultural experimental stations. A well-known example is the 8-course rotation cycle cotton—fallow—
fallow—cotton—fallow—sorghum—fallow—fallow which has been applied for many years in the Gez-
ira scheme in Sudan. Since the introduction of pesticides, insecticides and mechanized cultivation the
Gezira rotation scheme has been replaced by the 4-course cycle cotton—-wheat-sorghum (or groundnuts)—
fallow.

It will be clear that crop succession requirements have important implications for production planning
on the farm. Not only is it necessary to take the usage of the land in previous years into consideration, but it
is also important to be sure that the production plan is such that also in the future good (i.e. high yielding)
production plans are possible. The implementation of a fixed recommended crop rotation cycle may take
into account these considerations, but as a consequence there is not much freedom in choosing production
plans for future years.

In this paper we will focus instead on feasible production plans, i.e. those satisfying the crop succession
requirements. In our approach we adopt a mathematical programming framework and show that crop
succession requirements can be included as linear constraints in a model for agricultural production
planning. The paper is intended to assist in the modeling of real-life situations in agricultural production
planning, an example of which is the detailed study of farmers’ strategies on the Central Plateau in Burkina
Faso by Maatman [4]; see also Maatman et al. [3].

We assume the crop succession requirements are given in the form of crop sequences not allowed (i.e.
not advisable) to be cultivated on the same Maximum elapsed time stopping criterionpiece of land.
Whether a certain sequence is considered allowed or not may depend on several criteria (e.g. yield levels,
revenues, level of soil erosion, occurrence of plant diseases), the relative importance of which may vary in
different circumstances. In Section 2 we consider a planning period of 7 years. Decision variables are
introduced which represent the area of land where a certain sequence of m crops is cultivated, the last
crop of the sequence being grown in year ¢. Here, m + 1 is the length of the longest inadmissible crop
sequence not containing any inadmissible subsequence. It appears that the problem of determining
whether the cropping plan of year ¢ — 1 is compatible with the cropping plan of year ¢, can be interpreted
as a max-flow problem. In this way, the crop succession requirements may be written as linear constraints
in the decision variables. In Section 3 we consider linear programming models for farm production
planning, which contain crop succession constraints. It is shown that, under some regularity conditions, a
multi-year LP-model may be replaced by a one-year model. In this case a stationary cropping plan, i.e. a
cropping plan not depending on the year index ¢, is an optimal solution of the multi-year model. Also, it
is shown that a stationary cropping plan is composed of several crop rotation cycles. In Section 4 we
again consider a planning period of T years, as in Section 2. Here, we focus on reducing the number of
decision variables. For n crops, the number of decision variables for year ¢ equals n”. We show that this
number may be reduced by forming combinations of some of the crop sequences without losing crop
succession information. An algorithm is presented which finds the crop sequences that may be combined.
In Section 5 a conclusion is presented. In Appendix A to this paper, we discuss how to determine
inadmissible crop sequences not containing inadmissible subsequences, when a collection of inadmissible
sequences is given. The results of Sections 2.2 and 3 are due to Klein Haneveld [2] and were included in
Schweigman [5].
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2. Crop succession constraints
2.1. Definitions and assumptions

We consider a piece of land of 4 ha on which » different crops may be grown, where crop n is
interpreted as fallow. We consider a planning period of T years, which are numbered t =1,2,..., T, and
assume that there is one growing season per year. It is assumed that crop succession requirements depend
only on the types of crops that are grown and not on the methods of cultivation that are used. Moreover,
we assume that the crop succession requirements are given in the form of crop sequences that are not
allowed to be cultivated on the same piece of land. We introduce the following definitions. Consider a
year ¢ and a series of consequent years t+ 1,¢+2,...,¢+ h, with 2 = 2. Let (ji, 2,...,/x), be a sequence
of (not necessarily different) crops grown on the same piece of land, where j;, s = 1,2,... A, refer to the
crops grown in year ¢ + s. It is said to be an inadmissible sequence if one of the following three conditions
holds:

(I1) Crop j, is not allowed to succeed (i, ja, ..., Jjs_1), for some s =1,2,..., A, on the same piece of land.

(I2) Condition (I1) does not hold, but the cultivation of (x, ji, ja,. .., /i) on the same piece of land is not
allowed for all cropsx =1,...,n.

(I3) Conditions (I1) and (12) do not hold, but the cultivation of (ji, >, ..., ji,v) on the same piece of land is
not allowed for all crops y =1,...,n.

A sequence of crops that is not inadmissible is called admissible. We assume that the (in)admissibility of a
crop sequence does not depend on the year ¢ the sequence was started. Notice that it may happen that
(1,2, - - -, jn) 1s admissible, while (jo, ji, j2,---,jn) OF (Ji,J2s---,Jn, jus1) are inadmissible, for certain crops
Jjo and j,,1. Hence, the admissibility of a certain sequence may depend on the crops preceding or succeeding
the sequence. The sequence (ji, j», - - -, j») 18 regarded as admissible if the succession of the crops ji, ja, - - ., ju
on the same piece of land does not violate the crop succession requirements and an extension of the se-
quence is possible in the past and the future. However, it is not likely that any sequence will be inadmissible
due to (I2) or (I3), since an extension with fallow (i.e. crop n) is usually possible.

We say that the sequence (i1, 6, ..., i) is a subsequence of (ji, s, ..., i) if, for some I € [1,h —k + 1],
k < h, there holds

(jl7j2a"'7jh) = (,].17-“7].1717 i17'~'aik7 jl+ka"'ajh)-

If a sequence is admissible, then all its subsequences are admissible too. Analogously, if a sequence
(j1,J2y---,jn) 1s inadmissible, then all crop sequences containing (ji,ja,...,/s) are inadmissible too.
Therefore, the crop succession information may be expressed by all inadmissible sequences with the
shortest length 4. We call such sequences minimal inadmissible sequences. Formally, they are defined as
follows.

Definition 2.1. An inadmissible sequence (ji, j», . . ., /i) 18 called minimal if both the sequences (2, j3, - - -, ji)
and (ji, /s, ..., js_1) are admissible.

As can be seen, a minimal inadmissible sequence does not contain any inadmissible subsequences. The set
of all sequences (ji, 2, - - -,/x) is denoted by {1,2,... ,n}h. In the sequel we will sometimes use the notation
(i) for an arbitrary sequence (ij,i,,...,7;) and (j) for an arbitrary sequence (ji, ja,.-.,/jx). We denote the
length of the longest minimal inadmissible sequence by m + 1, i.e.

m+ 1 =max{h: there exists a minimal inadmissible sequence (j) € {1,2,...,n}"}. (2.1)
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Since we assume that all single crops are admissible, it follows that m > 1. We assume that all minimal
inadmissible sequences are known. In Appendix A we will discuss how to determine minimal inadmissible
sequences from a given collection of inadmissible sequences.

To be able to determine all feasible cropping plans for year ¢, it is sufficient to know:

(a) which crops have been grown in the years ¢ — m, ...,z — 1 on each part of the available land, and
(b) all admissible sequences of length m + 1.

Notice that by (2.1), (b) is equivalent to knowing all minimal inadmissible sequences.
Next, we define the set of all admissible sequences of length m

S={() e{1,2,...,n}": (j) is admissible}.

For each year ¢, we define the following decision variables which indicate the extension of the area where a
certain sequence (j) € S is applied.

X.(j) = X.(j1,j2,---,Jm) : size of the area (in ha) where in year ¢ — s crop j,_, is grown,
s=0,1,....m—=1,t=1,2,....T, (j) = (1,J2,---+Jm) ES. (2.2)

For (j) € S, we set X;(j) = 0. Notice that X,(j) only indicates the size of the area where crop sequence ()
is grown and not the location of this area on the piece of land under consideration. We will assume that
this location is immaterial in the sense that it has no influence on the yield per ha and the required
amount per ha of each input (see also Remark 3.4). Since we consider n crops, the number of decision
variables may be as large as n™ for each ¢. In Section 4 we will reduce this number by combining several
sequences in S.

It is required that X,(j) = 0, () € S, and

D X()=4 (2.3)
()es
for each t = 1,2,...,T. This implies that in each year ¢ all land is either cultivated or lying fallow. Notice

that the area where in year ¢ crop i is grown, is given by

> X))

(Ne{1,2,. !

The information under (a) above can be derived from the values of X, (i), (i) € S, and can be used to
determine feasible values for X,(j), (j) € S. Next, we express the information under (b) by specifying, for
each sequence (i) € S, the crops which are allowed to be cultivated after (i) on the same piece of land.
In fact, we consider sequences which are allowed to succeed one another. This notion is defined below.
First, we need the following definition.

Definition 2.2. We say that the sequence (ji,j2,...,/m) €S is a compatible successor of the sequence
(il7i27 .. 7lm) S S lf]l = i23j2 = i37 e 7jm—1 = lm

Hence, () is a compatible successor of (i) if it is logically possible to cultivate the crops ji,...,j, in the
years t —m + 1,...,¢ on the same piece of land where in the years t — m,...,t — 1 the crops iy,...,i, are
cultivated. It can be seen that this is equivalent to the requirement that j; = iy, j» = i3,...,j,_1 = i,. Notice

that for any sequence there are n compatible successors, since there are n possible values for j,. For each
sequence (i) € S we define a set of all (j) € S which are compatible successors of ().

COMP(i) = {(j) € S : (j) is a compatible successor of (i)}.
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If (j) is a compatible successor of (i) this does not imply that (j) is also allowed to succeed (i). We define the
last notion as follows.

Definition 2.3. We say that the sequence (j) = (ji,/2,...,/m) €S 18 allowed to succeed the sequence
(i) = (i1, 42, - - -, im) € Sif (j) is a compatible successor of (i) and the sequence (i1, iz, . . . ,im, jn) is admissible.

Notice that Definition 2.3 does not depend on the year ¢z in which the last crop j, is cultivated. For each
sequence (i) € S we define a set of all (j) € S that are allowed to succeed (i).

SUC(H) = {(j) € S : (j) is allowed to succeed (i)}. (2.4)

Hence, SUC(i) C COMP(i) for (i) € S. Since (i) € S is admissible, it follows by (I2) and (I3) that
SUC(i) # 0 and that there is a (j) € S such that (i) € SUC()).

The information under (b) above is now contained in the sets SUC(i), (i) € S. This implies that the
knowledge of X;_(i), (i) € S, and the sets SUC(i), (i) € S, is sufficient to determine the feasible region of

X(). () €.
2.2. Interpretation as a max-flow problem

Here, we focus on determining all feasible cropping plans X;(j), when the cropping plan X, ; (i) and the
sets SUC(i) are known and (2.3) is satisfied for # — | and 7. By interpreting this problem as a max-flow
problem, a system of linear equations in both X,(j) and X,_; (i) is obtained. These equations are necessary
and sufficient conditions for the compatibility of X, ;(7) and X,(j). We call this system of equations the crop
succession constraints. For the planning period of T years, the crop succession requirements are satisfied

if and only if the crop succession constraints hold for r =2,3,...,T.
Finding a feasible cropping plan X,(j) given the cropping plan X, (i) is equivalent to finding a feasible
allocation of the crops in year ¢, given the allocations in years ¢ —m,...,¢t — 1. This allocation prob-

lem may be formulated as follows. Let X, (i) and X,(j), (i), (j) € S, be given. We define the transition
variables

Z,((i), (j)) : size of the area (in ha) where in years ¢t —m, ..., ¢t — | the crop
sequence (i) has been grown and in years t —m + 1,..., ¢ the crop
sequence (j) is grown, (j) € COMP(i).

For (j) € COMP(i) we set Z/((i), (j)) = 0. The variables Z((i), (j)) should satisfy

S Z(@), () =X (i) V) €S, (2.5)
(j)eCOMP(i)
Z((0), () = X)) V() €s (2.6)
(1)€S:(j)eCOMP(i)
Z((i), () 2 0 (i), (j) € S, () € COMP(i), 2.7)
Z((0),())) =0 if (j) ¢ SUC(i). (2.8)

We may now define the compatibility of the cropping plans X, (i), (i) € S, and X,(j), (j) € S, as follows.

Definition 2.4. We say that the cropping plans X,_, (i), (i) € S, and X,(j), (j) € S, are compatible if and only
if (2.3) holds for # — 1 and ¢ and there exists a feasible solution Z,((i), (j)) for the system (2.5)—(2.8).
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Since (2.3) holds for ¢t — 1 and ¢, the sum of the right-hand side members of (2.5) equals 4 and the same is
true of (2.6). The right-hand side members of (2.5) and (2.6) being given we recognize in (2.5)—(2.8) the
constraints of a classical transportation problem in which total supply equals total demand and some of the
variables Z,((i), (j)) are restricted to zero values.

For our purposes, however, it is more convenient to interpret (2.5)—(2.8) as a max-flow problem. This
is done as follows. Consider a network with a source node, supply nodes (i) € S, demand nodes (j) € S
and a sink node. There is a directed arc from the source to every supply node (i) with capacity X, (7).
Analogously, there is a directed arc from every demand node (;) to the sink with capacity X,(j). Finally,
there is a directed arc from a supply node (i) to a demand node (;) if and only if () € SUC(i). Arcs
from (i) to () have infinite capacity. In this way, Z((i), (j)) represents the flow from (i) to (j) and there
exists a feasible solution to (2.5)—(2.8) if and only if there exists a flow of 4 units from the source to the
sink.

By the max-flow min-cut theorem (see Theorem 1.1 in [1]) a flow of 4 units is also the maximum flow
through the network. Indeed, since (2.3) holds for # — 1 and ¢, the cuts {source}—{supply nodes, demand
nodes, sink} and {source, supply nodes, demand nodes}—{sink} both have capacity 4. Hence, by the
max-flow min-cut theorem, there exists a flow of 4 units if and only if there are no cuts (separating
the source and sink nodes) with capacity less than 4. This observation is used to prove the following
theorem.

We consider sets 7,J C S with the property that no (j) € J is allowed to succeed any (i) € I, i.e.

(j) ¢ SUC(i) for all (i) € I and all (j) € J. (2.9)

In Section 2.3 it will be discussed how such sets can be determined.

Theorem 2.5. Assume that (2.3) holds for t — 1 and t. Then the cropping plans X, (i), (i) € S, and X,(j),
(j) € S, are compatible if and only if

ZX; 1) + ZX, ()<A4, VI,J C S satisfying (2.9). (2.10)

(et

Proof. It suffices to show that (2.10) is equivalent to the requirement that there are no cuts separating
the source and sink nodes with capacity less than 4. Denote the set of all supply nodes by U and the set of
all demand nodes by V. Let {U,,U,} and {J}, 5} be disjoint partitions of U and V respectively. An
arbitrary cut separating the source and sink nodes is of the form {source, U;, V1}-{U,, V3, sink}. The
capacity of this cut is infinite if there is an arc from U; to V5. If this is not the case, then the capacity of
the cut equals

ZX,] +ZX (2.11)

()eU; ()en

Hence, there are no cuts with capacity less than 4 if and only if (2.11) is greater than or equal to 4 for all
cuts with no arcs from U, to V5. Since (2.3) holds for # — 1 and ¢, this is equivalent to

A= 3 Ha A= 300 (2.12)

EU] EVZ

The proof is completed by writing (2.12) in the form

Zle +ZX

(el )er

and setting / = U; and J = 15, [
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We call the system of equations (2.10) the crop succession constraints. As can be seen, the crop succession
constraints are linear in X,_; (i) and X,(j). For the whole planning period of T years the crop succession
requirements are satisfied if and only if

S X))+ Y X()<4, t=23,...,T VIJCS satisfying (2.9). (2.13)
(el et

If necessary, the cropping plan from the year before + = 1 may be included by defining parameters x,(;),
(j) € S, analogous to the variables X;(j) and adding the constraint (2.13) for t = 1 with X;(j) = x0(j).

The finite planning horizon of 7 years may result in a situation where the possible cropping plans for the
year T + 1 result in low yields or revenues. To avoid this situation we may include in (2.13) also t = 7 + 1
and require for example that X;(j) = X741 (/). In this way it is guaranteed that the production plan X7 (j) is
a good starting point for the future. This approach will be discussed further in Section 3.1.

2.3. Redundant crop succession constraints

The number of crop succession constraints in (2.10) grows exponentially with » (although the number of
admissible sequences in the set S may be substantially less than #”). However, a lot of constraints in (2.10)
may be redundant. Here, we discuss a way to identify combinations of / and J for which the constraint
(2.10) is redundant. For I C S, let J(I) be defined by

J(I) ={() € §: () ¢ SUC() V(i) € I}.

A first observation is that, for a fixed set 7 C S, we only need to consider the set J(I) in (2.10), and not all
sets J C S which satisfy (2.9). This is due to the fact that, for a fixed set 7 C S, the term

> x0)
et
in (2.10), is maximal for J = J(I). Hence, we replace (2.10) by
S X+ Y X()<4 VICS. (2.14)
(el (Hes)
However, if J(I) = (), then (2.14) is implied by (2.3). Therefore, we only need to consider sets / with
J(I) # 0. We define
Ss={Ics:J{I) #0}.

Suppose that /,7 € S; and I C 1. Then J(I) C J(I) and it may happen that J(7) = J(I). In the latter case, the
constraint (2.14) for I is implied by the one for /. Hence, we may only consider sets / in the following
collection S5:

Sy ={I €S, : thereisno €S, such that I c 7 and J(I) =J(I)}.

When we consider only sets / € S, there may, however, still be redundant constraints in the system (2.14).
The constraint for /; € S, is redundant if there exists an I, € S,, such that

(11 UJ(Il)) - (12 UJ(Iz))
It may for example happen that /; C I, and J(I;) C L. Or that [, C J(I;) and J(I;) C J(I). Since excluding

all possibilities of redundancy is a rather tedious task, we will end our discussion at this point.

Notice that the roles of / and J are interchangeable, i.e. for J C § we also could have defined a set
I(J) ={(i) € S: (j) ¢ SUC(i) V(j) € J} and similar collections S; and S, as above.
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3. Stationary cropping plans in an LP-context

It is well-known that linear programming (LP) is a valuable tool for analysing production planning
problems. Also production planning of a farm may be analysed with the use of LP, see e.g. Schweigman
[5]. In this section, we consider a generic multi-year LP-model for farm production planning containing
crop succession constraints. In Section 3.1 it is shown that, under some regularity conditions, the multi-
year LP-model may be replaced by a one-year LP-model. In this case a stationary cropping plan, i.e.
X.(j) = X(j) for all 7, is an optimal solution of the multi-year LP-model. In Section 3.2 we show that a
stationary cropping plan is composed of several crop rotation cycles. A method to determine these cycles
is presented.

3.1. A stationary linear programming model

We formulate the following generic LP-model for agricultural production planning for a planning period
of T years. The decision variables are X,(j), as defined in (2.2). The model is given by

T
Maximize > > c(j)Xi()), (3.1)
t=1 (j)es
subject to Z)(,_l(i) + ZXfU) <4, t=2,3,...,T+1
(i)el (e
VI,J C S satistying (2.9), (3.2)
S X()=4, t=12,...,T, (3.3)
(Hes
> alk, (NXG)<bk), k=12,... K t=12...T, (3.4)
()es

As mentioned in Section 2.2 we also include the variables X7, (/) in the crop succession constraints (3.2)
and add (3.5) to ensure that the production plan Xr,;(j) is a good starting point for the future.

The limited availability of land is described by (3.3). For other inputs, the constraints (3.4) are included.
The parameters a(k, ()) indicate, for the crop sequence (;), how much of input & is needed to cultivate one
ha of crop j,. The inputs may be labour, manure, money, machines, seeds, etc. The parameters b(k)
represent the available amount of input k. Also food requirements may be written as (3.4). The parameters
¢(j) in the objective function represent, for example, the revenues per ha (i.e. the selling price per kg
multiplied by the yield in kg) when crop sequence (j) has been grown. For more details on the interpre-
tation of the constraints (3.4) and the objective function (3.1) we refer to Schweigman [5]; see also Maatman
et al. [3] and Maatman [4].

Notice that the parameters a(k, (j)), b(k) and ¢(j) do not depend on ¢. Therefore, the model (3.1)—(3.5)
may be called a stationary LP-model. We need the following definition.

Definition 3.1. We call a cropping plan X,(j), t=1,2,...,T, (j) €S, stationary if X,(j) =X(j),
t=1,2,....T, (j)€S.
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It follows that if an optimal solution of (3.1)—(3.5) is stationary, it is an optimal solution of

Maximize (/)X ()), (3.6)
subject to gi((i) + > X(j)<A4 VI,J CS satisfying (2.9), (3.7)
EX(/) :05 (3.8)
iga(k, UNX() <bk), k=1,2,... K. (3.9)

s

The following proposition shows that if (3.1)—(3.5) is feasible, then it has an optimal solution which is
stationary. This result has an important practical implication: in an optimal strategy the production plan
may be chosen the same in all years of the planning period.

Proposition 3.2

(P1) Problem (3.1)—(3.5) is feasible if and only if problem (3.6)—(3.9) is feasible.

(P2) Suppose (3.1)~(3.5) is feasible. Let X*(j), (j) € S, be an optimal solution of (3.6)~(3.9). Then X,(j) =
X*(j),t=1,2,...,T, (j) €S, is an optimal solution of (3.1)—(3.5).

Proof. Let X be a feasible solution of (3.6)—(3.9). Then X, =X, ¢t=1,...,T, is a feasible solution of (3.1)-
(3.5). The proof of (P1) is complete if we show that if (3.1)-(3.5) is feasible, then there exists a feasible
solution to (3.1)—(3.5), which is stationary.

Suppose (3.1)—(3.5) is feasible. Since the feasible region is compact, it also has an optimal solution, say
X', t=1,...,T. Define, for h=1,...,T,

XU = (X5 X7 X XD LX),
Then each X is a feasible solution to (3.1)~(3.5). Moreover, since X! = X* and the objective function
(3.1) has the same value for all X} h = 1,..., T, the feasible solutions X are also optimal. Define

T T T

v-1 > X = <l Z){,l ZX,) =(X1,..., X71).
T h=1 r =1 r =1

Since the feasible region of (3.1)—(3.5) is convex X is a feasible solution. This completes the proof of (P1),

since X is a stationary solution. Notice that the objective function (3.1) has the same value for X as for X*.

Therefore, X is an optimal solution of (3.1)—(3.5) and X, is an optimal solution of (3.6)—(3.9).

Next we prove (P2). Suppose (3.1)—(3.5) is feasible. By (P1) also (3.6)—(3.9) is feasible. Since the feasible
region of (3.6)—(3.9) is compact it has an optimal solution, say X°. The stationary solution X, = X°,
t=1,...,T,is feasible for (3.1)—(3.5). Moreover, since X; above has the same objective value (3.6) as X°,
the stationary solution X; = X° has the same objective value (3.1) as X. Hence, X; = X° is an optimal
solution of (3.1)—(3.5). This completes the proof of (P2). O

Remark 3.3. It is important to note that Proposition 3.2 does not hold if some of the parameters a(k, (5)),
b(k) and ¢(j) in the model (3.1)—(3.5) depend on ¢. This implies that we assume that, for example, crop
prices and yields per ha do not change during the T years of the planning period, which is rather unrealistic.
If prices or yields change and the current stationary cropping plan X (j) is not optimal anymore, we still
need a multi-year LP-model to transform X (/) into the optimal stationary solution. Also, we may not use
the possibility of discounting future revenues.
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Another situation in which Proposition 3.2 is not valid anymore is when we include the cropping
plan from the year before # = 1. As explained in Section 2.2, this may be done by defining parame-
ters xo(j), (j) €S, analogous to the variables X,(j) and adding the constraint (3.2) for t =1 with

Xo(7) = xo(j)-

Remark 3.4. The cropping plans X,(j), t =1,2,...,T, (j) € S, only indicate the sizes of the areas where in
year ¢ the crop sequence (j) is grown and not the Jlocations of these areas on the 4 ha of land that is
available. For t = 2,3,..., T, any feasible solution Z((i), (j)) of (2.5)—(2.8) describes a feasible allocation of
the crops in year ¢. Moreover, for year = | any ordering of X;(j), (j) € S, is a feasible allocation.

We assume that the location of the areas X;(j) is immaterial in the sense that it has no influence on the
required amount per ha of each input and on the yield per ha. However, the freedom of choosing a feasible
Z,((7), (j)) and the allocation in year ¢ = 1 may still be used to obtain ‘good’ locations for the crops in each
year.

Remark 3.5. The amounts of inputs used per ha and the yield per ha usually depend not only on the type of
crop, but also on the method of cultivation. For example, the yield per ha of maize may be influenced by the
amount of manure that is applied per ha. For this reason, it may be appropriate to define decision variables
X,(f, (j)) indicating the area where crop sequence (j) is grown and method of cultivation /" is used. The
model (3.1)—(3.5) may then be changed as follows. Since we assume that the crop succession requirements
do not depend on the methods of cultivation that are used, we may set

/\/t(]):z/\/l(fv(]))v U)GS, t=12,...,T,
f

and leave the crop succession constraints (3.2) unchanged. Also (3.3) remains the same. The constraints
(3.4) may be changed into

SN alk f N () <bk), k=1.2,... K, t=12,...T.

(es f

In this way, it is expressed that the required amounts of inputs and the yield may also depend on the
method of cultivation . Analogously, the objective function (3.1) may be changed into

Maximize ; ;; Z:Cr(f’ UNX:(f, ()

Also, we may replace (3.5) by
Xl(,f?(]))_XT-H(fv(f)):O Vfa V(])GS

For this new model we then have an analogous result as Proposition 3.2 in terms of the decision variables
X(f, ().

Notice that when m = 1, the decision variables indicate the size of the area where a single crop is grown.
Hence, it is not possible to express a dependence of the yield of the current crop on the crop grown last year
on the same piece of land. Therefore, in this case one may prefer to use the decision variables for the
situation m = 2.

3.2. Crop rotation cycles

In this section we discuss how to determine, for a stationary cropping plan X (), the pieces of land where
each crop should be cultivated each year. We show that a stationary cropping plan is composed of several
crop rotation cycles. How to determine these rotation cycles and the sizes of the areas where they should be
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applied, is explained in the proof of Proposition 3.7. We define a crop rotation cycle in terms of sequences
in S as follows.

Definition 3.6. A collection of sequences C = {(j)', (j)’,...,(})'} €S, h =1, is called a crop rotation
eyele if (j)F is allowed to succeed ()", k =2,3,...,h, and (j)" is allowed to succeed (;)".

Hence, a crop rotation cycle is defined as a collection of sequences in S, that is allowed to be applied
cyclically on the same piece of land. If 2 = 1 in Definition 3.6, then the single sequence in C consists of m
times the same crop. Hence, the same crop is grown permanently. If # = 2, then cycle C consists of two
different crops which are alternated. For & = 3 there are two possibilities: either a sequence of three different
crops is repeated, or periods of two years the same crop are alternated with one-year periods in which a
different crop is grown. In general, the cycle C consists of at most /4 different crops.

In Definition 3.6, the number of sequences in C and the length in years of the crop rotation cycle defined
by C, are both equal to 4. For & < m, this may not seem obvious. However, in this case there holds for any
sequence (j) in C,

Jk =Jksns k=1,...,m—h.
The main result of this section is formulated in the following proposition.
Proposition 3.7. Let X (), (j) € S, satisfy (3.7) and (3.8). Define
Sy ={() € S: X(j) > 0}. (3.10)

Then there exist crop rotation cycles C; C Sy, s = 1,2, ..., v, which can be applied such that in every year the
area where sequence (j) is grown, is equal to X (j), (j) € Sy.

Proof. Let X (), (j) € S, satisfy (3.7) and (3.8). Then, by Theorem 2.5, there exists a feasible solution
Z((d), (), (), () €8, (j) € COMP(i), to the following system:

Yo Z(@:0) =X(0), V@) €S, (3.11)
(/)eCOMP(i)
Z((0), (7)) =X(j), V() €S, (3.12)
(i)€S:(j)eCOMP(i)
Z((@),())) =0, V(@),() €S, (j)e COMP(i), (3.13)
Z((i),(j)) =0 if (j) & SUC()). (3.14)

We choose a feasible solution Z of (3.11)—(3.14). Next, we construct a network of nodes () € Sy. There is a
directed arc from node (i) to node (j) if and only if Z((7), ()) > 0. The value of Z((i), (j)) is interpreted as
the flow from node (i) to node (j). The total flow in the network equals 4, since by (3.8), (3.10), (3.11) and
(3.12) there holds

> 2((0), () = 4.
(HeSx (HeSy
From (3.11) and (3.12) it can be concluded that for each node () in the network, the total flow into (j) is
equal to the total flow out of (). Because of this flow conservation property, each node (j) in the network is
contained in a flow cycle. Suppose node () is contained in some flow cycle C;. Let w, be the minimum flow
between two consecutive nodes in Cs, i.€.
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wy = min{Z((7), (k)) : cycle C, contains the arc (i) — (k)}.

Because of the flow conservation property we know that w, > 0. The flow in the whole network can be
described by a finite number of flow cycles C;, s = 1,2,...,v. Indeed, if a cycle C; is deleted from the
network, i.e. the flow through the nodes in C; is decreased by w, then the flow conservation property still
holds for all nodes in the network. Hence, we may delete another cycle C,. In this way, the flow in the
network becomes zero after deleting a finite number of cycles.

The flow cycles Cy, ..., C, determine the values of Z((i), (j)) completely, since

Z((),U) = >,  we (3.15)

s:arc (i)—(j) in Cs
Let A, be given by
hy =card(Cy), s=1,2,...,0.

The procedure above splits up the transitions Z((i), (j)) into flows wy in cycles C; of lengths 4. Hence, there
holds

thwx =A. (3.16)
s=1

From Definition 3.6 it is clear that a flow cycle C; may be interpreted as a crop rotation cycle. Moreover,
when each rotation cycle C; is applied on an area of A,w, ha, then a rotation scheme can be constructed
where each year the area of crop sequence (;) is X(;). This is done as follows.

In the first year, the total area of 4 ha is divided into v plots with sizes A;w,, s = 1,2, ..., v. The plot for
cycle C; is divided into A parts of size w,. On each part a different () in C; is grown. In the following years,
each part of the plot for C, follows the schedule dictated by the rotation cycle C;. By (3.16), it follows that
all land is used. Moreover, by (3.15) and (3.12), the area for (j) € Sy is equal to

> we= Y Z((i), (/) = X()).

(i)eSx s:arc (i)—(j) in Cy (i)eSx

This completes the proof of Proposition 3.7. [

Remark 3.8. In the proof of Proposition 3.7 there may be many possible ways of choosing the cycles
Cy,...,C,. For example, a different feasible solution Z of (3.11)-(3.14) may be taken. Also, the order of
picking the cycles may be varied. Or we may choose to consider only cycles C; which do not contain the
same sequence (j) more than once. Another possibility is to decrease the flow in cycle C; by a quantity less
than w;.

The cropping plan X is required to satisfy only (3.7) and (3.8). We may for example take X to be an
optimal solution of (3.6)-(3.9). The transitions Z satisfying (3.11)—(3.14) may also be chosen by using
preference criteria, e.g. some objective function. If X and Z are chosen optimal (in some sense), then
Cy,...,C, may be called optimal crop rotation cycles.

4. Preprocessing: Reducing the number of decision variables by combining crop sequences

Here we leave the LP-context of the previous section and reconsider the crop succession constraints
(2.10). We show that some groups of admissible sequences of length m with the same last crop may be
combined without losing crop succession information. As a result, the number of decision variables and the
number of equations in (2.10) is reduced. It should be noted that our aim is to find groups of sequences that
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can be combined without losing crop succession information. This does not imply that they also have to be
combined. For example, when using model (3.1)-(3.5) one may choose not to combine certain admissible
sequences (i) and (/) when ¢(i) # ¢(j) or a(k, (i)) # a(k, (j)) for some input k.

In Section 2.1 it is stated that to determine the feasible cropping plans for year ¢, it is sufficient to know
(a) which crops have been grown in the years ¢t — m, ..., ¢t — 1 on each part of the available land, and (b) all
admissible sequences of length m + 1. Here we argue that, given the crop succession information (b), in order
to satisfy the crop succession requirements it may not be necessary to know exactly which crops have been
grown in the years t — m,...,t — 1 on each part of the available land. In some cases, it may be sufficient to
know that in a certain year one crop from a certain set of crops has been grown on a certain part of the
available land. Hence, given the crop succession information (b), we do not need «ll information under (a) to
determine the feasible cropping plans for year z.

Recall that we expressed (a) in terms of X, (i), (i) € S, and (b) in terms of the sets SUC(), (i) € S. In
this section, we combine certain groups of sequences in S into new sequences and thus obtain a new set of
sequences S*. A sequence (j) € S* still has length m. The difference with sequences in S is that now the
element j; may represent a set of crops instead of only one crop. For each (i) € S, the set of successors
(j) € §* is denoted by SUC"(i). We define decision variables X;(j), (j) € S*, analogous to (2.2). Now X,_; (i),
(i) € §*, do not contain all information under (a). However, the combinations may be chosen in such a way
that the sets SUC" (i), (i) € S*, still contain all information under (b). Moreover, given X, (i), (i) € S*, and
SUC" (i), (i) € S*, it is then still possible to determine all feasible cropping plans for year z. The combi-
nations of sequences in S for which this holds are determined by the sets SUC(i), (i) € S.

Forming combinations of groups of sequences in S as above, implies a reduction of the number of
decision variables. For each ¢, the number of decision variables X;(j) in (2.2) equals card(S) and may be
of the order »”. In Section 4.1 we illustrate the process of combining sequences with a small-scale
example. A larger example is formulated to express the need for a sequence-combining algorithm. Such
an algorithm is presented in Section 4.2. In Section 4.3 we show that when this algorithm is used to
combine sequences, the information under (b) above is preserved. Moreover, the cropping plans X, (i),
(i) € §*, and X,(j), (j) € S*, are compatible if and only if crop succession constraints analogous to (2.10)
are satisfied.

4.1. A small-scale example

Consider n = 3 crops and suppose that crop 1 may succeed crop 1 provided that crop 2 is grown on the
land two years before. In this case, (1,1,1) and (3,1,1) are the minimal inadmissible sequences. Hence,
m =2 and

§=A{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1), (3,2), (3,3)}-
The sets SUC(i), (i) € S, are given by

SUC(2,1) = {(1,1),(1,2),(1,3)},
SUC(1,1) =SUC(3,1) ={(1,2),(1,3)},
SUC(1,2) =SUC(2,2) = SUC(3,2) = {(2,1),(2,2),(2,3)},

SUC(1,3) =SUC(2,3) =SUC(3,3) = {(3,1),(3,2),(3,3)}.
As we see, SUC(1,1) = SUC(3, 1). This implies that if in year ¢ crop 1 is grown on a certain piece of land,
the possibilities for year # + 1 do not depend on whether the crop grown in year ¢ — 1 is crop 1 or crop 3.
Hence, intuitively, we may combine the sequences (1, 1) and (3, 1) into the new sequence (1 or 3,1). The set

SUC(1 or 3,1) is then equal to SUC(1, 1). The set SUC(2, 1) contains (1, 1) but not (3, 1). In this case, we
just replace (1, 1) by the new sequence (1 or 3,1). Logically, this is not a problem, since a succession of
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(2,1) by (1 or 3,1) implies that (2,1, 1) is grown. The same is true for SUC(1, 3), which contains (3, 1) but
not (1,1). The sets SUC(i) change into

SUC(2,1) = {(1 or 3,1),(1,2), (1,3)},

SUC(1 or 3,1) ={(1,2),(1,3)},
SUC(1,2) = SUC(2,2) = SUC(3,2) = {(2,1),(2,2),(2,3)},
SUC(1,3) = SUC(2,3) = SUC(3, ) {(L or 3,1),(3,2),(3,3)}.
Since SUC(1,2) = SUC(2,2) = SUC(3,2), we may also combine (1,2), (2,2) and (3,2) into the sequence

(x,2), where x denotes all crops. The same holds for (1,3), (2,3) and (3,3). We combine them into (x, 3).
Using the same arguments as above, there holds

SUC*(2,1) = {(1 or 3,1), (x,2), (x,3)},
SUC(1 or 3,1) = {(x,2), (x,3)},
SUC"(x,2) = {(2,1), (x,2), (x,3)},
SUC*(x,3) = {(1 or 3,1), (x,2), (x,3)}.

We changed the notation from SUC(i) to SUC(i), since all SUC*(i) are different and no more combi-
nations can be formed in the same way as above. Hence, the final set of sequences is

§* ={(2,1),(1 or 3,1), (x,2), (x,3)}.

Notice that if (x,3) is succeeded by (x,2), then either (1,3,2), (2,3,2) or (3,3,2) is grown. From the sets
SUC*(i) it can be concluded that (1,1,1) and (3,1, 1) are the only inadmissible sequences. Hence, after
combining the sequences as we did, we still know all admissible sequences of length m + 1 = 3.

For (i) € S* and t = 1,2,..., T, we define a corresponding variable X, (i) as follows:

(2,1): area where in year ¢ crop 1 is grown and in year ¢ — 1 crop 1 was grown.

(1 or 3,1): area where in year ¢ crop 1 is grown and in year ¢ — 1 crop 1 or crop 3 was grown.
(x,2): area where in year ¢ crop 2 is grown.

(x,3): area where in year ¢ crop 3 is grown.

.?<E<E<E<

By forming the combinations as above we have reduced the number of decision variables from 9 to 4. With
respect to the compatibility of X, (i), (i) € S*, and X,(j), (j) € S*, the analogue of Theorem 2.5 holds. This
result is formulated in Theorem 4.7.

In the small-scale example above the combinations that may be formed can be determined by hand.
However, for an example with a larger number of crops # or a larger value of m it may be more convenient
to have a computer program which determines the sequences that may be combined. Such a larger example
is the following.

Example 4.1. Suppose we have the crops cotton (crop 1), sorghum (crop 2), soya-beans (crop 3) and fallow
land (crop 4). We assume that the following crop succession requirements have to be fulfilled.

(R1) After cotton and sorghum, there should be at least a one-year fallow.
(R2) Cotton may succeed cotton only after a two-year fallow in between.
(R3) Sorghum may succeed sorghum only after a two-year fallow in between.
(R4) Cotton may succeed sorghum only after a two-year fallow in between.
(R5) Soya-beans may be succeeded only by sorghum and fallow.

(R6) At least three out of every five years the land should lie fallow.
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Determining all minimal inadmissible sequences for (R1)-(R6) is a rather complex task. However, in
Appendix A an algorithm is presented which determines the minimal inadmissible sequences from a given
collection of inadmissible sequences. Using this algorithm, we obtain the minimal inadmissible sequences
for (R1)-(R6) and the value of m = 4. Starting with the set .S of admissible sequences of length 4 and using
the same reasoning as above, the following set S* is obtained:

(372)4)4) (3747174) (3’4’ 3’4) (47 37274) (4’3)45 1) (47 3747 3) (4’4’ 174) (47472)4)7
(4,4,3,2) (4,4,3,4) (4,4,4,3) (1,4,2,4) (5,4,3,4) (v,4,4,1) (v,4,4,2) (4,4,4,3),
(v,4,4,4) (4,1,4,2) (4,5,4,3) (4,u,4,4),
where s denotes crop 1 or crop 2, ¢t denotes crop 1 or crop 3, u denotes crops 1, 2 or 3 and v denotes all four
crops.

4.2. An algorithm
Here, we present an algorithm that may be used to combine sequences as in Section 4.1. After the

combinations are formed, a sequence (i) € S* has m elements and each element is either a single crop or a
combined crop. For each crop, the area for the current year must be known exactly. Therefore, for (i) € S*,

we want i, to be a single crop. The elements iy, .. .,i,_; may be combined crops. Our algorithm consists of

an INITIALISATION STEP followed by STEP ¢, ¢ = 1,2,...,m — 1. In each STEP ¢, we look for sequences

(i) and (j) with identical sets of successors and which only differ in the gth element, i.e.
(ila“-viqfl):(jla'“vjqfl):(r)a Ig 7£qu (iq+la-~~7im):(,jq+1a~-~7jm):(k) (4'1)

for some (r) and (k). For fixed (r) and (k), there are at most n sequences satisfying this property. They are
then combined into the new sequence ((r), y, (k)), where y is the combined crop consisting of all gth (single)
crops of the sequences that are combined. When no more sequences can be combined in this way, the new set
of admissible sequences S is determined. STEP ¢ ends by determining the new sets of successors SUC? (i),
(i) € S, A detailed description of the INITIALISATION STEP and a general STEP g are given below.

INITIALISATION STEP
Set S© = § and SUC" (i) = SUC(i), (i) € S, and go to STEP 1.
STEP ¢ (g=1,....m—1)
o For (r) = (r1,...,ry-1) and (k) € {1,2,...,n}"™, define C), C S~V by
C(%)(k) ={(i) € 8“™V: thereis a (j) € S“ Y, such that SUCY V() = SUCY V(i) and (4.1) is satisfied}.

)(
o If Céf))m = () for all (r) and (k), then set $* = §@~) and SUC*(i) = SUC“ (i), (i) € §*, and STOP.
e For any Céf)>(k> # (), combine all sequences in Cff>)(k> into the new sequence ((r),y, (k)), where y is the
combined crop consisting of all gth (single) crops of the sequences in C((f,’))(k).

e Define the new set of sequences S by deleting sequences (i) € S~V which were combined above and
adding the new formed combinations.
e Construct the sets SUC' (i), (i) € §@, as follows. Consider a pair (i), (j) € S,

(C1) If (i), (j) € S NS4Y, then (j) € SUCY (i) if and only if (j) € SUCY V(i).

(C2) If (i) € S9 NSV and (j) € S \ 4D, (j) was formed from C((f))(k), then (j) € SUCY (;) if and
only if there is a (¢) € C((f>>(k) with () € SUCY 1 (i).

(C3) If (i) € @\ S, (i) was formed from C(<Z))(l>’ and (j) € @ NS« then () € SUCY (i) if and
only if (j) € SUCYV(s), for any (all) (s) € C) .
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(C4) If (i) € S@ \ SV (i) was formed from CEZ;(,), and (j) € S@ \ 5=V, (j) was formed from C§f>)<k),
then (j) € SUCY (i) if and only if there is a (1) € C{%),, with (1) € SUCY(s), for any (all)
) c C(‘i)
(s) € Cipp-
o If g<m —2, then go to STEP ¢ + 1. Else, set §* = §@ and SUC*(i) = SUCY (i), (i) € §*, and STOP.

The construction of the sets SUC'Y (i), (i) € S, may need some explanation. In (C1), both (i) and (j) are
not combined in STEP ¢ and nothing changes. In (C2), sequence (i) is not combined, while () is formed in
STEP ¢. In this case, () is allowed to succeed (i) if and only if some sequence (¢), which is combined into (j),
is allowed to succeed (7). In Lemma 4.9, we will show that there is at most one such sequence (¢). In (C3),
sequence (i) is formed in STEP ¢, while (/) is not combined. Here, (/) is allowed to succeed (i) if and only if (5)
is allowed to succeed some sequence (s), which is combined into (7). Notice that if such a sequence (s) exists,
then (j) is allowed to succeed all (s) which are combined into (i), since, for these sequences (s), the sets
SUC((FU(S) are identical. In (C4), both (i) and () are formed in STEP ¢. From (C2) and (C3) it follows that
(j) is allowed to succeed (i) if and only if some sequence (¢), which is combined into (j), is allowed to succeed
some sequence (s), which is combined into (i). As in (C2), for each (s), there is at most one such sequence (¢).

In the algorithm, the order of the steps is STEp 1, STEP 2,..., STEP m — 1. In STEP ¢ combinations are
formed of sequences in the sets Cé:,’>><k>. Since these sequences satisfy (4.1), there holds that for any (j) € S
all elements in (j;41,...,/.) are single crops.

It may seem that the order of the steps may be changed. However, this is not true. In Lemma 4.2 we
show that if, after steps 1,...,q — 1, we execute STEP pwithp € {¢g+ 1,...,m — 1}, then no sequences will
be combined.

The algorithm stops if no sequences are combined in the current step. This is correct, since in Lemma 4.3
it is shown that if in STEP ¢ — 1 no sequences are combined, then also in STEP ¢ no sequences will be
combined.

Lemma 4.2. Suppose the steps 1,...,q — 1 have been executed in this order. If next STEP p is executed, with
pEe{q+1,...,m— 1}, then no sequences will be combined.

Proof. Suppose to the contrary that in STEP p some sequences are combined, i.e. for some (i), (j) € S~V
with
(i],...,l'p,l):(jl,...,jp,l):(I”), ip 7éjpa (ip+1)"'7im):(jp+17"'7j”1):(k) (4'2)

for some (r) and (k), there holds SUCY V(i) = SUCY V(}). For any sequence (x) € S 1 the elements
Xgs- - - X, are single crops. Hence, for any (¢) € SUC (i), there holds

js:is:s—la S:q+1a"'7m'
But, since p € {¢+1,...,m — 1}, this implies i, = j, which contradicts (4.2). Therefore, in STEP p no
sequences will be combined. [

Lemma 4.3. If in STEP q — 1 no sequences are combined, then also in STEP g no sequences will be combined.

Proof. The proof is similar to the proof of Lemma 4.2. Suppose to the contrary that in STEP ¢ some se-
quences are combined, i.e. for some (i), (j) € S~V satisfying (4.1) for some (r) and (k), there holds
SUCH V(i) = SUCY“ Y (j). Since no sequences are combined in STEP ¢ — 1, for any (x) € S the elements
X, 1,--,%, are single crops. Hence, for any () € SUC'"" (i), there holds

Js=ls=1t_1, S=¢,...,m.

But this implies i, = j, which contradicts (4.1). Therefore, in STEP ¢ no sequences will be combined. [J
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Remark 4.4. An analogous statement as in Lemma 4.3 does not hold for an individual (i) € S“~1), i.e. when
(i) is not combined in STEP ¢ — 1, it may still be combined in STEP ¢ if in STEP ¢ — 1 some other sequences
are combined. An example is as follows. Consider n = 2 crops and suppose that all crop succession
information is given by the inadmissibility of (2,2,2,2) and (2,1,2,2). Then these sequences are also
minimal inadmissible and m = 3. If we execute our algorithm, then $* = {(x, 1, 1), (x,2, 1), (1,1,2),(1,2,2),
(2,x,2)}, where x denotes all crops. Hence, (2, 1,2) and (2,2,2) are not combined in STEP 1, while in STEP
2 they are combined into (2,x,2).

Remark 4.5. We have programmed the algorithm using the software package Matlab 5. Our computational
experience with the program learns that on a Pentium 4 PC, the algorithm terminates within approximately
15 minutes for values of n and m with »” < 3200 approximately. To our opinion, this covers most practical
situations.

4.3. No loss of crop succession information

Here, we show that the information under (b), i.e. all admissible sequences of length m + 1, is preserved
when sequences are combined in the algorithm of Section 4.2. First, we introduce some notation. Let

B9 = {(ir,. . imp1) : (i1, yim) €S9 sy € {1,2,...,n}, such that there is a (j) € SUCY (iy, ..., i,)
Then B9 contains all admissible sequences of length m + 1 (containing both combined and single crops

as elements), based on $@ and the sets SUC (i), (i) € S. For any sequence (i) of length m, possibly
containing combined crops, let

COMB(i) = {(s) € {1,2,...,n}" : (s) is contained in (i)}

For (i) € S© we have COMB(i) = (i). From the definition of the algorithm in Section 4.2 it follows that
COMB(i) C S, (i) € S. Moreover, for any g € {0, 1,...,m — 1}, the sets COMB(i), (i) € S, constitute
a disjoint partition of S©.

To express the information in B4 in terms of §© and SUC" (i), (i) € S©), we define

BY = {(s1,....8mp1) € {1,2,...,n}""" : there is an (i) € B“ such that (sq,...,s,) € COMB(iy,...,i,)
and i,1 = Spi1}-

Notice that Bgo) = B contains all admissible sequences of length m + 1 (containing only single crops
as elements), i.e. all information under (b). We have the following result.

Proposition 4.6. Suppose that in STEP q some sequences are combined. Then there holds

BY =B

The proof of Proposition 4.6 is presented below. Proposition 4.6 shows that, by combining sequences in the
way the algorithm prescribes, all information under (b) is preserved. As a consequence, the results of
Theorem 2.5, Section 2.3, Proposition 3.2 and 3.7 are also valid for the decision variables X;(j), (j) € S* and
the sets SUC (i), (i) € S*. The analogue of Theorem 2.5 is as follows.

We consider sets /,J C S* satisfying

(j) ¢ SUC™(i) for all (i) €I and all (j) € J. (4.3)
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Theorem 4.7. Assume that (2.3) holds for t — 1 and t. Then the cropping plans X;_(i), (i) € S*, and X,(j),
(j) € S*, are compatible if and only if

ZX; (1) + ZX, (j)<A, VI,J CS satisfying (4.3). (4.4)

For the whole planning period of 7 years the crop succession requirements are satisfied if and only if
(4.4) holds for t =2,3,...,T. Since the last crop of any sequence in S* is a single crop, the knowledge of
X.(j), t=12,...,T, (j) € S*, implies that for each year 1,2,..., T the area for each crop 1,2,...,n is
known exactly.

Before we prove Proposition 4.6, we need the following definition and lemma.

Definition 4.8. Let (i) and (j) be combined sequences of length m. We say that () is a compatible successor
of (i) if there is an (s) € COMB(i) and a (1) € COMB(j) such that t; = 55,60 = 53, .., ty_1 = Su-

Notice that a sequence (i) € S, ¢ > 1, may have more than n compatible successors (j) € S. An example
can be found in Remark 4.4, where n=2and (2,x,2) € S* has three compatible successors: (x,2, 1), (1,2,2)
and (2,x,2).

Lemma 4.9. Suppose (i) € S~V and Cgf))(k) # (. Then there is at most one (t) € C((f))<k) that is a compatible
successor of (i).

Proof. The proof is similar to the proofs of Lemmas 4.2 and 4.3. Let (s), (¢) € C )) k , with (#) a compatible

successor of (7). Suppose to the contrary that also (s) is a compatible successor of (i). For any sequence
(x) € SV the elements X4, .., Xy are single crops. Hence, there holds

Skl = G = gy k:q+17am
But this implies s, = #, which contradicts the fact that (s), (¢) € C((;’))(k). Therefore, if Céf,’;(k) # 0, then, for any

(i) € 8=V, there is at most one (¢) € C((Z))@) that is a compatible successor of (i). [

Proof of Proposition 4.6. We will show that, if in STEP ¢ some sequences are combined, then Bf)q) = Bf)’H).
Since g € {1,2,...,m — 1} is arbitrary, this completes the proof.

Consider an arbitrary sequence (ki ..., ky11) € {1,2,...,n}""" and suppose that
(ki,... ky) € COMB(s), (s) e8¢,
(k2 .. km+l) € COMB(t), (1) eS8V,
(ki,...,kn) € COMB(i), (i) €S9
(ka, ... mﬂ) € COMB(j), (j) € S®

Notice that (s), (¢), (i) and (j) above are uniquely determined. If in STEP ¢ the sequence (i) is formed from
some group of sequences, then this group contains (s). The same is true for (j) and (¢). For (i) and (j) we
distinguish the situations (C1)—(C4) of Section 4.2.

(Cl) (i) = (s) and (j) = (2).

(C2) (i) = (s) and () is formed from a group containing (¢).

(C3) (i) is formed from a group containing (s) and () = (¢).

(C4) (i) is formed from a group containing (s) and (j) is formed from a group containing ().
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Suppose (kl, oy kny) € B<q D Then it follows that (si,...,Sm %) € B9 and, hence, that

(t) € SUCU ™V (s). To obtam that (k1,...,ku11) € B(()q), we need to show that (j) € SUCY(i). But, since

(t) € SUCY“V(s), this follows for each of (C1)~(C4) from the definition of the algorithm in Section 4.2.
It remains to show that if (ky,. .., ku.1) & Bé"fl), then (kl, k) € Bg"). When (ki,. .. ,km) ¢ SO this

holds trivially. We will therefore assume that (ky, ..., k,) € S©. Suppose that (ks, ..., kns1) & S© Let ( /) be
as above. If (ki,..., k1) GBS”), then (i1, ..., 0m, knt1) EB and, hence, there ex1sts a (j) € SY with
(j) € SUCY (i) and j, =kns. But this implies (ky,... k) € COMB(/) which contradicts
(ka, ... k1) & S, Therefore, if (ky, ... k1) € S, then (ky, ... Kui1) gZBq

Next, we give the proof for the case (ky, ..., kns1) € S©. Let (8),(#), (i) and (j) be as above. Since
(ki kni1) & B(()‘H), this implies that (sy, ..., s, ) € BY"" and, hence, that (1) ¢ SUCY“ Y (s). However,
since (ky,...,k,) € COMB(s) and (k,,... ,,,+1) € COMB(#), (¢) is a compatible successor of (s). Analo-
gously, (j) is a compatible successor of (i ). The proof will be complete if we show that (j) & SUCY(i).
Again, we distinguish the cases (C1)-(C4) above.

For (C1) there is nothing to prove. For (C2), it follows from Lemma 4.9 that (¢) is the only compatible
successor of (s) in the group of sequences from which (/) is formed. Hence, from the defnition of the
algorithm in Section 4.2 it follows that (1) ¢ SUCY " (s) implies () & SUC (i). Next, we consider (C3).
The sequences in the group from which (i) is formed all have the same set SUCY"" as (s). Therefore,
(j) = (1) € SUCY D (s) implies (j) ¢ SUCY (i). Combining the arguments for (C2) and (C3), it can be seen
that also for (C4) there holds (j) ¢ SUC'(i). This completes the proof.

5. Conclusion

In the paper we have discussed crop succession requirements from a mathematical programming point of
view. We assumed that all crop succession information is given in the form of crop sequences which are not
allowed (i.e. not advisable) to be cultivated on the same piece of land. These sequences are called inad-
missible. The inadmissibility of a sequence is assumed not to depend on the year it was started. A key role is
played by so-called minimal inadmissible sequences, i.e inadmissible sequences not containing inadmissible
subsequences. If m + 1 is the length of the longest minimal inadmissible sequence, then we need to consider
the cropping plans of the years t — m, ...t — 1 in order to determine the feasible cropping plans for year ¢.
In Appendix A a method was presented to determine the minimal inadmissible sequences from an arbitrary
collection of inadmissible sequences.

We defined decision variables representing the size of the area where a certain admissible sequence of m
crops is applied, the last crop being grown in year ¢. In Section 2.2 we showed that, for a piece of land of
fixed size, the crop succession requirements can be written as linear constraints in the decision variables.
The number of admissible sequences of length m (and, hence, the number of decision variables) may be
reduced, without losing crop succession information, by forming suitable combinations of sequences. An
algorithm which determines such combinations of sequences was presented in Section 4, together with a
proof of its correctness.

In Section 3 we considered a generic LP-model for agricultural production planning with a finite
planning horizon of T years, containing the linear crop succession constraints. We considered a sta-
tionary version of the model in which the parameters do not depend on the year index and the cropping
plan for year T + 1 is also taken into account and is required to be identical to the cropping plan of year
1. We showed that any optimal solution of this model has a stationary version with the same objective
value. This implies that, when using this model, the optimal production strategy may be chosen the
same zin all years of the planning period. In Section 3.2 we presented a method to determine the pieces
of land where each crop should be cultivated each year, when such a stationary cropping plan is to be
applied.
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Appendix A. Determining minimal inadmissible sequences

The notion of a minimal inadmissible sequence plays an important role in the analysis above. The length
of the longest minimal inadmissible sequence indicates how many years we should look into the past when
determining feasible cropping plans for next year. Above, we implicitly assumed that all minimal inad-
missible sequences were known. In practice, however, it may happen that only a collection of inadmissible
sequences is given. Here, we discuss how the minimal inadmissible sequences may be determined from such
a collection, under the assumption that the given collection of inadmissible sequences represents all crop
succession information. The following example shows that, in general, this may not be a trivial task. Recall
that inadmissible sequences are defined by conditions (I1)—(I3) in Section 2.1.

Example A.1. Suppose we consider n = 2 crops and all crop succession information is represented by the
inadmissibility of the sequences (1,1,1,1) and (2,1, 1). Then there is only one minimal inadmissible se-
quence, namely (1, 1). Indeed, suppose we have cultivated (1,1) in years t — 1 and 7. Then we have grown
crop | in year ¢ — 2, since (2,1,1) is inadmissible. And also in year ¢ — 3 we must have grown crop 1.
Otherwise we have a sequence (2, 1, 1) for the years ¢t — 3,¢ — 2,¢ — 1. But now we have cultivated crop 1 for
four successive years, which is also inadmissible. Therefore, (1,1) is inadmissible. Since (1,1,1,1) and
(2,1,1) both contain (1, 1), they are not minimal inadmissible. The sequence (1, 1), however, is minimal
inadmissible, since the cultivation of crop 1 is not entirely prohibited.

The example above can still be worked out by hand. However, to determine the minimal inadmissible
sequences for (R1)-(R6) in Example 4.1 is more difficult. In this case, it is more convenient to have a
computer program which determines all minimal inadmissible sequences from a given collection of inad-
missible sequences. Below, we present such an algorithm. We assume that an initial collection of inad-
missible sequences is given by the sets M), 4 > 1, where

M, ={(i) € {1,2,...,n}": (i) is inadmissible}.
Suppose the longest inadmissible sequence has length H + 1, i.e.
H+1=max{h: M, # 0}. (A.1)

As above, we assume that H > 1. If the collection U "' M), represents all crop succession information, then
its set of minimal inadmissible sequences is unique and the longest minimal inadmissible sequence has a
length of at most H + 1.

Our algorithm consists of three steps: STEP M1, STEP M2 and STEP M3. Before we determine the minimal
inadmissible sequences, we first determine all inadmissible sequences based on the sets M,
h=1,2,...,H + 1. This is done in STEP M1 and STEP M2.

Step M1: For h=1,2,... H, do the following.
1.1 Foreach (i) € M), foreachg € {h+1,...,H + 1}, if there is a (j) € {1,2,...,n}* with (j) € M, and
(7) is a subsequence of (), then add (j) to M,.
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In STEP M1 we enlarge the collection of inadmissible sequences by including all sequences which contain
an inadmissible subsequence in some set M,. However, after STEP M1 the collection of inadmissible se-
quences does not yet contain all inadmissible sequences that can be found, using the sets M),. We also need
to include sequences (not contained in any M) of which the inadmissibility follows from the sets M, by
logical reasoning. An example is the sequence (1,1) in Example A.l. Such sequences are identified by
making use of similar sets as SUC(i) in (2.4). For (i) € {1,2,...,n}", we define

SUC, () ={() € {1,2,....0}" - () € My, G, - jnr) = (ins -, i) and ((i), ju) & Mys1 }-

Hence, (j) € SUC,(i) if and only if (5) is allowed to succeed (i) according to M, and M,,,. Notice that if
SUC,(i) = 0, then (i) is inadmissible. Also, if (i) € {1,2,...,n}" is not contained in any set SUC,(/), then
(i) is inadmissible.

StepM2: Forh=H,H —1,...,1, do the following.

2.1 For all sequences (i) € {1,2,...,n}" with (i) & M,, determine the sets SUC,(i) based on the informa-
tion in M.

2.2 Let Dy = {(i) € {1,2,...,n}" \ M, : SUC,4(i) = 0 or (i) € SUC,(}), ¥(j) € M,}. If D, # 0, then go
to STEP 2.3, else NEXT 4.

23 Add all (i) eD, to M,. For each (i)e€D,, for each ge{h+1,...,H+ 1}, if there is a
(j) € {1,2,...,n}* with (j) € M, and (i) is a subsequence of (), then add (/) to M,. Start again at
the beginning of STEP M2.

If in STEP 2.2 some inadmissible sequences are found, they are added to M,. Moreover, all sequences
containing these sequences are inadmissible too and are added to M,, g = h + 1. This may change the sets
SUC,(i), g = h. Therefore, when inadmissible sequences are found, we start again at the beginning of STEP
m2. It can be seen that after STEP M2 the sets M, M,, ..., My, contain all inadmissible sequences that can
be found based on the initial collection of inadmissible sequences. However, the addition in STEP 2.3 of
sequences to My, g € {h+1,...,H}, is not necessary, since at this point they are already contained in the
sets M,, g € {h+1,...,H}. Moreover, also the addition of sequences to My, is not necessary. In Prop-
osition A.3 it is shown that we may replace STEP 2.3 by

2.3" Add all (i) € D;, to M, and go to STEP 2.1.

In STEP M3 we determine the minimal inadmissible sequences by deleting inadmissible sequences that
contain an inadmissible subsequence.

Step M3: For h=1,2,...,H, do the following.
3.1 For each (i) € M), foreach g € {h+1,...,H + 1}, if there is a () € M, that contains (i) as a sub-
sequence, then delete () from M,.

In this way, we end up with all minimal inadmissible sequences in the sets M, M, ..., My . There holds
m+ 1 =max{h: M, # 0}

Notice that m may be smaller than H, as can be seen from Example A.1.

There are several ways in which the algorithm above can be made faster. A first observation is that the
sequences which are added to the sets M, in STEP M1 and STEP 2.3 (for g = 4+ 1) are not minimal
inadmissible, since they contain an inadmissible subsequence. Hence, in STEP M3, these sequences may be
deleted without examination. Another change by which the procedure may become faster, is by starting
with STEP M3, followed by a recalculation of H in (A.1). Since STEP M3 excludes sequences from the initial
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collection which are not minimal inadmissible, after STEP m3 the value of H may have decreased. As
a result, the algorithm consisting of STEP M3, STEP M1, STEP M2 and again STEP M3, has more steps but
may be faster.

Remark A.2. We have programmed a version of the algorithm above using the software package Matlab 5.
We start with STep m3, followed by STEP M1, STEP M2 and again STEP M3, and use STEP 2.3* instead of
SteP 2.3. Our computational experience with the program learns that on a Pentium 4 PC, the algorithm
terminates within approximately 20 minutes for values of n and H with n/ <3400 approximately. To our
opinion, this covers most practical situations.

Proposition A.3. Suppose an initial collection My, h = 1, is given and STEP M1 has been executed. Suppose
that in STEP 2.2 D), # 0 for some h. Then there holds for any (i) € D,

(F1) If h<H — 1, then after STEP M2 has been executed for h+ 1, the sets M,, g € {h+1,...,H}, contain
all sequences having (i) as a subsequence.
(F2) In STEP 2.3 it is not necessary to add sequences to My, containing (i) as a subsequence.

Proof. First, we prove (F1). Suppose STEP m1 has been executed. Observe that there holds for
h=12,...,H,

(s) € M = all (r) € {1,2,...,n}* containing (s) are in My, g=h+1,...,H + 1. (A.2)

Suppose that D, # 0 in STEP 2.2 for some i € {1,2,...,H — 1}. Let (i) € D,. Suppose that SUC, (i) = 0.
Then after STEP M2 has been executed for A + 1, there holds for all x € {1,2,...,n},

(ED) If (ia, ..., ip,x) & My, then ((i),x) € M1,
(EZ) If ((1),x) th-Hs then (iz, e 7ih,x) eM,.

Since the set M, is still the same as after STEP M1 and no sequences have been deleted from M, 4, it follows
from (A.2) that (E2) is impossible. Therefore, if SUC,(i) = 0, then after STEP M1

((l),x)) € My, Vxe {1,2,...71’1}. (A3)

Notice that this implies that any sequence (y, (1)), » € {1,2,...,n}, not contained in M;,, has an empty set
SUC,11(y, (i)). However, such sequences (y, (i)) do not exist, since they were added to M., when STEP M2
was executed for 2 + 1. Therefore, after STEP M2 has been executed for # + 1, there holds

() € Myr, Vyefl,2,...n}. (A4)

Hence, it follows from (A.3) and (A.4) that after STEP M2 has been executed for /4 + 1, all sequences
containing (i) are contained in M, . Since (A.3) holds after STEP M1, it follows from (A.2) that after STEP
M1 all sequences of the form (v, (i),x) and ((i),x,»), x,y € {1,2,...,n}, are contained in M, ,. But this
implies that sequences of the form (x,y, (i), x,y € {1,2,...,n}, have an empty set SUC,,,(x,y, (i)). Hence,
all sequences of the form (x,y, (i)) were added to M;,, when STEP M2 was executed for A + 2. Therefore,
after STEP M2 has been executed for 4 + 1, all sequences containing (i) are contained in both M, and M, ,.
Analogously, it can be shown that after STEP M2 has been executed for 4 + 1, all sequences containing (i)
are contained in M, forg=h+1,... H.

Suppose next that (i) € D, due to (i) ¢ SUC,(j) for all (j) ¢ M,. Then after STEP M2 has been executed
for i + 1, there holds for all x € {1,2,...,n},

(E3) If (x, ila PN ih*l) ¢ Mh, then (x, (l)) € Mh+1a
(E4) If (X, (l)) €Mh+1, then ()C, Iy... 7lvh,]) e M,.
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Since the set M, is still the same as after STEP M1 and no sequences have been deleted from M, 4, it follows
from (A.2) that (E4) is impossible. Therefore, if (i) ¢ SUC,(j) for all (j) & M,, then after STEP M1,

(x, (Z))) 6Mh+17 Vx € {1,2,...77’1}. (AS)

Notice that this implies that any sequence ((i),y), y € {1,2,...,n}, not contained in M., is not contained
in any set SUC,,,;. However, such sequences ((i),y) do not exist, since they were added to M| when STEP
M2 was executed for i + 1. Therefore, after STEP M2 has been executed for 4 + 1, there holds

((),y) € My, Vye{l,2,...,n}. (A.6)

Hence, it follows from (A.5) and (A.6) that after STEP M2 has been executed for 4+ 1, all sequences
containing (i) are contained in M. Since (A.5) holds after STEP M1, it follows from (A.2) that after STEP
M1 all sequences of the form (y,x,(i)) and (x, (i),y), x,y € {1,2,...,n}, are contained in M, ,. But this
implies that sequences of the form ((i),x,y), x,y € {1,2,...,n}, are not contained in any set SUC,,,.
Hence, all sequences of the form ((i),x,y) were added to M,,, when STEP M2 was executed for 4 + 2.
Therefore, after STEP M2 has been executed for % + 1, all sequences containing (i) are contained in both
M, and M,,. Analogously, it can be shown that after STEP M2 has been executed for # + 1, all sequences
containing (i) are contained in M, forg=h+1,...,H.

Notice that when # is the first (i.e. largest) 4 for which D, # () in STEP 2.2, an analogous proof as above
shows that after STep M1 all sequences containing an (i) € D, are contained in the sets M,,
g=nh+1,...,H. This completes the proof of (F1).

Next, we prove (F2). First, we consider the case # = H. Let (i) € Dy. In STEP 2.3 sequences containing
(i) as a subsequence are added to My ;. As a result, the sets SUCy, may change. However, the same changes
in SUCy are obtained when (i) is added to M. This can be seen as follows. The sequences added to My,
are of the form (x, (i)) or ((i),x), for x € {1,2,...,n}. Therefore, as a result, only the sets SUCy(j) may
change for which either (j) is a compatible successor of (i), i.e. (ji,...,jm_1) = (f2,...,igx), or (i) is a
compatible successor of (j), i.e. (i1,...,ig_1) = (j2,...,/ju). But these sets SUCy(j) change in the same way
when (i) is added to My. This completes the proof for the case & = H.

Next, we consider the case # < H — 1. Let (i) € D,. From the proof of (F1) it follows that all sequences
(k) of length H containing (i) are contained in My after STEP M2 has been executed for H. Sequences of
length H + 1 containing (i) are of the form (x, (k)) or ((k),x), for x € {1,2,...,n}, where (k) has length H
and contains (7). From the proof of (F2) for # = H it follows that adding such sequences to My, will not
result in more inadmissible sequences of length AH. This completes the proof of (F2). [

Proposition A.3 shows that STEP 2.3 may be replaced by STEP 2.3*. One may wonder whether it is
necessary to update the sets SUC, after the sequences in D, have been added to M), in STEP 2.3*. In other
words, may we replace STEP 2.3* by

The following example shows that this is not the case.
Example A.4. Consider n =3 crops and start with My ={(2,1,3,2),(2,1,3,1)} and M5 = {(3,3,1),
(3,3,2),(3,3,3)}. Then H = 3 and after STEP M1 we have

My ={(2,1,3,2),(2,1,3,1),(3,3,s,2), (u,3,3,v),s, t,u,v = 1,2,3}.

Next, we execute STEP M2. In STEP 2.2 we have SUC;(1,3,3) = SUC5(2,3,3) = ). Hence, (1,3,3) and
(2,3,3) are added to M5;. When we go to STEP 2.1 and change the sets SUC;, we find that SUC;(2, 1, 3) = ).
Therefore, also (2,1, 3) is added to M;. For & = 2, it is found that SUC,(3,3) = () and (3, 3) is added to M,.
After STEP M3, we obtain My = 0, Mz = {(2,1,3)} and M, = {(3,3)}.
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